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Abstract---This study aims to identify volatility models for the daily 
closing price of Bitcoin in USD during the period from January 1, 

2020, to June 30, 2024, by applying autoregressive conditional 

heteroskedasticity (ARCH) models, where the error distribution follows 
the normal distribution. These models take into account price 

fluctuations during the trading period. The results indicate that the 

best model for estimating the time series data of the daily closing price 
of Bitcoin is the EGARCH model, among other ARCH models, as it has 

the lowest value for the statistical criteria used (H-Q, SIC, and AIC) for 

model selection. This confirms the importance of using ARCH models 

in volatility (risk) analysis, leading to accurate and reliable 
conclusions that benefit market participants. Additionally, the results 

show the presence of variance effects on the time series of daily 

closing prices, which was confirmed by the ARCH test on residuals. 
This implies that there are fluctuations in the daily closing prices of 

Bitcoin, necessitating the use of ARCH family models to predict daily 

Bitcoin closing prices. 
 
Keywords---Bitcoin, Volatility modelling, ARCH model. 

 
 

Introduction  

 
Bitcoin is considered one of the most important virtual cryptocurrencies, available 

only in digital form with no physical existence. It is used through computers and 

electronic wallets, and is a decentralized currency used for purchasing goods and 

services. Unlike traditional currencies, Bitcoin is not governed by central banks 
but is subject to supply and demand. Bitcoin was designed with a limited supply, 

contrary to traditional currencies, which can be increased or decreased by 
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monetary authorities. The supply of Bitcoin was set by Satoshi Nakamoto at a 

maximum of twenty-one million (21 million) units. Due to its decentralized nature 
and lack of official backing, it has been banned in many countries. In Algeria, the 

law prohibits its purchase, sale, usage, and possession, with strict penalties for 

violations. From this, the study emerged to answer the following questions: 
1) How effective are ARCH models in predicting Bitcoin price volatility? 

2) Can Bitcoin price volatility be modeled using Autoregressive Conditional 

Heteroskedasticity (ARCH) models? 
 

Importance of the Study 

 
The importance of this study lies in the increasing value of Bitcoin and the rising 

demand for it due to the advantages it offers to its users. Understanding the 

factors influencing Bitcoin price volatility is crucial, especially considering the 

concerns surrounding it, as many countries have banned it and penalized its 
users according to their national laws. 

 

Objectives of the Study 
 

The aim of this study is to shed light on Bitcoin in terms of its concept, origin, 

features, issuance, and usage. Furthermore, it seeks to model Bitcoin price 
volatility from 2020 to June 2024 using ARCH models and to determine the most 

suitable model for diagnosing Bitcoin price fluctuations, identifying the reasons 

behind these fluctuations, the most influential factors, and the resulting 
implications. 

 

Methodology and Data 

 
This study employs a descriptive-analytical method for the theoretical aspect and 

an econometric approach for the applied analysis. The data used are daily Bitcoin 

prices in U.S. dollars, obtained from the website https://finance.yahoo.com. The 
dataset includes daily closing prices from January 1, 2020, to June 30, 2024, 

with a total of 1,640 observations. 

 
Structure of the Study 

 

To achieve the research objectives and address the problem, the study is 
structured as follows: the first section covers the econometric model and steps for 

building it, while the second section focuses on the applied analysis. The 

conclusion will summarize the findings and provide recommendations. 

 
Section One: The Econometric Model and Steps for Model Building 

 

First: Building the Econometric Model  
Time series of trading indicators often experience significant volatility due to 

political and economic factors, which, in turn, influence market investments. 

Various criteria are used to diagnose the most suitable model: 
1. Akaike Information Criterion (AIC): 

Proposed by Hirotugu Akaike in 1974, the AIC criterion, denoted as AIC, is 

used to select the appropriate model rank from among several models. The 
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rank corresponding to the lowest AIC value is the most appropriate for the 

observations. The AIC formula can be expressed as follows (Akaike, 1974):  

AIC= (-2) Ing (maximum likelihood) +2k 
Where: K represents the number of model parameters. 

2. Schwarz Information Criterion (SIC): 

In 1978, Gideon Schwarz introduced the Schwarz Information Criterion 
(SIC), represented by SIC, as a refinement to address the inconsistency 

found in AIC. Schwarz imposes a stricter penalty, expressed as kln(n)k 

\ln(n)kln(n), and the SIC formula is given as follows (Hassan, 2017):  
SIC = -2(Maximum likelihood)+kIn(n) 

The model rank corresponding to the lowest SIC value is selected. 

3. Hannan-Quinn Criterion (H-Q): 
In 1979, Hannan and Quinn proposed a new criterion for model selection, 

known as the Hannan-Quinn criterion (H-Q), denoted by H−QH-QH−Q. 

The mathematical expression is as follows (Manal Belkacem, 2021):  

C>2H                     𝐻 − 𝑄 = 𝑙𝑛�̂�𝑎
2 + 2ℎ𝐶𝑙𝑛(In 𝑛)/𝑛 

The model rank corresponding to the lowest H-Q value is selected. 

 
Second: Estimating ARCH and GARCH Models 

 

ARCH and GARCH models are used in financial data analysis to model variance. 
Modern investors are not only concerned with predicting expected returns on 

bonds and stocks but are also interested in risk factors and uncertainty. To study 

uncertainty, we must address volatility in stock prices over time, known as 
variance. The models that handle this type of variance belong to the ARCH family 

(Hussein Batal, 2020). 

 
Most commonly used volatility prediction models belong to the GARCH family. 

The first model of this type, Autoregressive Conditional Heteroskedasticity 

(ARCH), was proposed by Engle in 1982. The Generalized ARCH (GARCH) model 

by Bollerslev (1986) became the foundation for most volatility models. Since then, 
a rich family of GARCH models has emerged, though their usage is often limited. 

GARCH models fall under the category of conditional volatility models, which rely 

on the optimal exponential weighting of historical returns to assign less weight to 
more recent returns. The model parameters are typically estimated using 

maximum likelihood (Jón Daníelsson, 2011). 

 
01 - The ARCH Model: 

 

The first model that provides a methodological framework for modeling volatility is 
the ARCH model by Engle (1982). The fundamental idea behind ARCH models is 

that (a) the shock ata_tat resulting from asset returns is not serially correlated 

but is dependent. And (b) the dependence of ata_tat can be described through a 

simple quadratic function of its lagged values. Specifically, the ARCH(m) model 
assumes that: 

 

𝑎𝑡 =  σ𝑡ϵt        𝑎𝑡
2 = 𝛼0 + 𝛼1𝑎𝑡

2 + ⋯ + 𝛼𝑚𝑎𝑡
2 

 

Where {ϵt}  represents a series of independent and identically distributed (iid) 

random variables with a mean of zero and a variance of one, with 1  α0 > 0,   i >
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𝛼𝑖  ل ـ 0 ≥  The parameters αi  must satisfy certain regularity conditions to ensure .و 0

that the unconditional variance of 𝑎𝑡   is finite. Statistically, ϵt  is often assumed to 

follow a standard normal distribution, a standardized Student-t distribution, or a 
generalized error distribution. 

 

From the model's structure, it is evident that large past squared shocks {𝑎𝑡−𝑖
2 }i=1

m  

imply a large conditional variance of 𝑎𝑡
2   for the innovation 𝑎𝑡  and thus 𝑎𝑡   tends to 

take on a large value (in magnitude). This means that, within the ARCH 
framework, large shocks tend to be followed by another large shock. The word 

"tend" is used here because large variance does not necessarily lead to large 

shocks; it merely indicates a higher likelihood of experiencing a large variance 
compared to a smaller one. This feature resembles the volatility clusters observed 

in asset returns (Ruey S. Tsay, 2005). 

 
02 - The GARCH Model: 

 

One of the weaknesses of the ARCH model is that it often requires many 
parameters and a high order to capture the volatility process. To address this 

shortcoming, Bollerslev (1986) proposed the GARCH model, which is based on an 

infinite ARCH specification. This allows for the reduction of the number of 

estimated parameters by imposing nonlinear constraints. The standard GARCH(p, 

q) model expresses the variance at time t    ، σt
2 as follows: (Alberga, Shalita, Yosef 

2008). 

σ𝑡
2 = ω + ∑ σiεt−i

2

q

i=1

+ ∑ βjσt−j
2

p

j−1

 

Where βj، σi  ωو  are the parameters to be estimated, and by using the lag operator 

L, the variance becomes: 

σ𝑡
2 = ω + α(L)εt

2 + β(L)σ𝑡
2 

 

Where : α(L) = ∑ αi
q
i=1 𝐿𝑖    و β(L) = ∑ βj

p
j=1 𝐿𝑗   .  

 

If all the polynomial roots  |1 − β(𝐿)| = 0 lie outside the unit circle, then we have: 

 

σ𝑡
2 = ω[1 − β(L)]−1 + α(L)[1 − β(L)]−1ε𝑡

2 
 

This equation can be perceived as an ARCH(∞) process since the conditional 
variance linearly depends on all previous squared residual values. Consequently, 

the conditional variance of 𝑦t can become greater than the unconditional 

variance. Therefore, if the previous achievements of  εt
2   from  𝜎2, the variance will 

be given by: 

σ2 = 𝐸(𝜀𝑖
2) =

𝜔

1 − ∑ 𝛼𝑖
𝑞
𝑖=1 − ∑ 𝛽𝑗

𝑝
𝑗=1

 

 

Similar to ARCH, some constraints are necessary to ensure that σ𝑡
2  is positive for 

all t. Bollerslev demonstrates that imposing ω>0  ،  𝑎𝑖 ≥0 ensures this condition. 

(For  i=1 , …….,q 0( و    𝛽𝑗≥   ( 𝑗=1,……,𝑝 ). It is sufficient for the conditional variance to 

be positive. 
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03 - The EGARCH Model: 

 

This is another commonly used asymmetric GARCH model developed by Nelson in 
1991. The exponential GARCH (EGARCH) model can be defined as follows (Wang 

P., 2009): 

In(σt
2) = 𝛼0 + βIn (𝜎𝑡−1

2 ) + 𝛼 {|
𝜀𝑡−1

𝜎𝑡−1
| − √

2

𝜋
} − 𝛾

𝜀𝑡−1

𝜎𝑡−1
 

 

Where γ is the asymmetric response parameter or leverage parameter. It is 

expected that the sign of γ will be positive in most empirical cases, meaning that a 

negative shock increases future volatility or uncertainty, while a positive shock 
affects future uncertainty. This contrasts with the standard GARCH model, where 

shocks of the same magnitude, whether positive or negative, have the same effect 

on future volatility in macroeconomic analysis, financial markets, and corporate 
finance. 

 

04 - The TGARCH Model: 
 

The TGARCH model was studied by Zakoian in 1994. The specification of the 

TGARCH model is based on the conditional standard deviation rather than the 
conditional variance (P. Sidorov, 2010). 

σt
2 => 𝛼0 + α1

+|εt−1
+ |2 − α1

−|εt−1
− |2 + δσt−1

2  
 

The phenomenon of shock asymmetry is tested through the following null 

hypothesis: 

𝐻0 ⇒ α1
− = 0 (symmetry of the effects of negative and positive shocks on volatility, 

indicating no difference). 
 

Second Section: Modeling Bitcoin Price Volatility Using ARCH Models 

 
In this section, we will calculate Bitcoin prices using ARCH models. To achieve 

this, we will rely on the following stages: a descriptive study of the return series of 

Bitcoin prices, followed by a study of the stability of Bitcoin prices, then 
conducting ARCH tests to verify the validity of the model, and finally selecting the 

best ARCH model to determine the volatility series of Bitcoin prices, followed by 

an assessment of the model's adequacy. 

 
First - Descriptive Study of the Bitcoin Price Return Series: 

 

In the applied aspect, we relied on daily closing price data for Bitcoin to extract its 
volatility over the period from January 1, 2020, to June 30, 2024, with a total of 

1,643 observations. In the following figure, 
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Figure 01: Descriptive Statistics for the Data Series (Jarque-Bera Test) for Normal 

Distribution 
Source: Prepared by the researchers using EViews 13. 

 

According to Figure 01, it is evident that the average of the Bitcoin series is 
32,295.39, with the maximum value reaching 73,083 and the minimum value 

being 4,970.788. The standard deviation is 17,542.52, and the skewness 

coefficient is (Skewness=0.418660), indicating a positive skewness, meaning that 
the error distribution has a long tail to the right. Additionally, we note that the 

kurtosis value is (kurtosis=2.219047), which differs from the value of 333, 

indicating that the distribution is biased towards a value lower than that of the 
normal distribution, suggesting that the residuals have moderately flat tails. As 

for the Jarque-Bera value of 89.74827, it is significant at the 1% level, which 

indicates that, based on all these indicators, we can infer that the residuals do 

not follow a normal distribution. 
 

Second - Stability Study of the Series: 

 
To study any economic phenomenon, it is essential to ensure the stability of the 

series representing that phenomenon. Afterward, we can estimate the model that 

represents the phenomenon, as the time series of daily prices may be unstable. To 
test for the stability of the series, we must use the Augmented Dickey-Fuller test 

and the Phillips-Perron test. 
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Figure 02: Curve of the Bitcoin Series 

 

Prepared by the researchers using the statistical software EViews-13. 
It is clear from the series curve that it is unstable and characterized by significant 

fluctuations. From the beginning of 2020 to 2021, the currency experienced a 

continuous increase, followed by fluctuations during the period from 2021 to 
2022, and then a noticeable decline, reaching its lowest point in mid-2022. 

Subsequently, the currency began to improve and increase until 2024. Thus, we 

conclude that the curve has a trend component and is unstable at its original 
level. 

 

 
Figure 03: Autocorrelation Function of the Bitcoin Series 

 

Prepared by the researchers using the statistical software EViews 13. 

From Figure 03, it is evident that all Q-Stat values are significant and differ from 

zero, indicating that the autocorrelation parameters are very high, approaching 
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0.99, and have exceeded the confidence limits. This suggests that our series is 

unstable. 
 

To verify the preliminary results regarding the absence of stability in the original 

form of the study variables according to graphical analysis and autocorrelation 
studies, the next step during this period will involve subjecting the time series to 

the Augmented Dickey-Fuller (ADF) unit root test. The following table summarizes 

the results of this test. 
 

Table 01: Unit Root Test Results for Phillips-Perron and Dickey-Fuller 

 

Tests Level First Difference 

 Constant Only Constant and Trend 

ADF -1.2505  
Prob=0.6543 

 

-1.5204  

Prob=0.8225 

PP -1.2443  
Prob=0.6571 

-1.5157  
Prob=0.8242 

Source: Prepared by the researchers using EViews 13. 
 

From the above table, we observe that the daily closing prices of Bitcoin are 

unstable at the level for both models (ADF + PP), as the p-values for the t-stat test 
are less than 0.05. However, the series stabilizes when the first difference is 

applied. The first difference was selected due to the instability of the series at the 

level, and the series is designated as (dcl). 
 

Figure 03: Graph of the dcl Series 

Source: Prepared by the researchers using EViews 13. 
 

We observe from Figure (3) that the trend component has been removed from the 

series, resulting in stability, as the mean appears to be constant over time. It is 
noted that the series goes through periods of low volatility followed by periods of 

high volatility, which is characteristic of financial time series. 
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Third: Testing ARCH Models: 

 

ARCH models allow for the modeling of series that exhibit rapid instantaneous 
fluctuations dependent on the past. The presence of an ARCH effect relies on the 

possibility of a self-regression among the squared daily prices. This can be 

demonstrated either by examining the autocorrelation and partial autocorrelation 
or by conducting a Lagrange multiplier test or performing a Ljung-Box test, which 

are used to assess the randomness of the series' residuals by calculating the 

autocorrelation coefficients of the residuals. 
 

01- Testing for the Presence of an ARCH Effect: 

 
Table 02: ARCH Test for Bitcoin Price Series 

Source: Prepared by the researchers using Eviews 13 

 

From the table, we observe that for the Fisher F-statistic and the Lagrange 

multiplier, the probability values are negligible, being less than 5%. This indicates 
that we reject the null hypothesis of the absence of an ARCH effect and accept the 

existence of an ARCH effect, meaning that there is an impact of 

heteroskedasticity. 
 

02 - Estimation of the GARCH Model 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
Source: Prepared by the researchers using Eviews 13 

 

 

Heteroskedastisticity Test ARCH 

0.000 Prob.F(1,1638) 30.2623 F-statistic 

0.000 Prob.Chi-square(1) 29.7496 Obs*R-squared 
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03 - Estimation of the TGARCH Model 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

Source: Prepared by the researchers using Eviews 13 
 

04 - Estimation of the EGARCH Model 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

Source: Prepared by the researchers using Eviews 13 
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We must select the best model, for which we will analyze its parameters and rely 

on it for forecasting, based on certain criteria (AIC, SIC, H-Q). This is referred to 

as the Maximum Likelihood Estimation (M.L.E) method. We will clarify this in the 
following table: 

 

Table 03: Selection of the Best Model 
 

Models  Sch AIC H-Q 

GARCH 16.4278 16.4113 19.580 

TGARCH 16.4199 16.4001 20.346 

EGARCH 16.4084 16.3887 19.717 

Source: Prepared by the researchers using Eviews 13 

 

From the estimation results, it is evident that the EGARCH model is the best 
model, as it has the lowest value among the aforementioned criteria. 

After selecting the EGARCH model, we summarize its parameter estimates in the 

following table: 
 

Table 04: Parameters of the EGARCH Model 

 

Prob z-Statistic Std.Error coefficient Variable 

0.0002 3.7286 0.01012 0.037769 C(3) 

0.0000 13.7055 0.009146 0.125358 C(4) 

0.0000 7.1521 0.004991 0.03569 C(5) 

0.0000 1138.227 0.000871 0.991104 C(6) 

Source: Prepared by the researchers using Eviews 13 

 
From the table estimating the EGARCH model, we can derive the following 

equation: 

 
LOG(GARCH) = 0.0377692956693 + 0.125357897273*ABS(RESID(-

1)/@SQRT(GARCH(-1))) + 0.0356931393625*RESID(-1)/@SQRT(GARCH(-1)) + 

0.991103680826*LOG(GARCH(-1)) 
 

We observe that all model parameters are statistically significant at the 1% level, 

indicating that the model is statistically acceptable. 

• C(4): This parameter indicates the extent to which the size of the shock 
affects the variance of future fluctuations in Bitcoin. 

• C(5): This parameter provides insight into how the sign of the shock 

impacts future fluctuations in Bitcoin. 

• C(6): This parameter offers insight into the persistence of past fluctuations 
and how they help in predicting future fluctuations. 

• c(4) is positive, indicating a positive relationship between past variance 

and current variance in absolute terms. This means that as the size of the 

shock increases, volatility also increases. 

• c(5) is positive, indicating that good news will increase volatility more than 

bad news of the same magnitude—evidence of Bitcoin's sensitivity. 
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Model Diagnostic Tests: After diagnosing the appropriate model, it is essential to 

ensure its validity and efficiency by using the ARCH test on the residuals to verify 
that the model is free from ARCH effects. Additionally, the model will be examined 

using the Q-statistic to ensure that the residuals do not exhibit autocorrelation. 

We will illustrate this in the following tables: 
 

• Test for ARCH Effects on Model Residuals: 

 

Table 05: Results of the Breusch-Godfrey Serial Correlation LM Test. 

Source: Prepared by the researchers using Eviews 13. 
 

It is observed that the calculated F value reached 1.7907 with a probability of 

(0.1810), which is greater than 5%. Therefore, we accept the null hypothesis, 
indicating that there is no ARCH effect on the residuals. 

 

Table 06: Results of the Q-statistic Test for the Residuals of the EGARCH Model. 
 

 

 
 

 

 

 
 

 

 
 

 

Source: Prepared by the researchers using Eviews 13. 

 
It is clear from the table above that there is no autocorrelation between the 

residuals, nor between the squares of the residuals across all periods. Therefore, 

the residuals are random and independently distributed for each model. 

Breusch-Godfrey serial correlation LM test 

0.1810 Prob.F(1,1638) 1.7907 F-statistic 

0.1808 Prob.Chi-square(1) 1.7910 Obs*R-squared 
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Figure 04: Forecast of the model values and the residuals of the model. 

Source: Prepared by the researchers using Eviews 13. 
 

As a final step, we predicted the values of the optimal model, as shown in the 

previous table. It became evident that the estimates were within the confidence 
limits at a level of 0.95%. The quality of the estimates for the model is also 

reflected in the root mean squared error (RMSE), which was the lowest among the 

models tested, with a value of (RMSE = 1227.936). Additionally, the mean 
absolute error (MAE) was (MAE = 756.4626), and the Theil inequality coefficient 

was (Theil = 0.9611), which is less than one. 

 

Conclusion 
 

To apply the conditional autoregressive models with heteroskedastic errors to the 

daily price series of Bitcoin from January 1, 2020, to June 30, 2024, it was 
essential to ensure the stability of the series under study. This was achieved by 

removing the trend component and ultimately obtaining the DCL series. Various 

statistical tests (ADF; PP) confirmed the stability of the series. 
From the stages of modeling the DCL series, we can conclude the following 

results: 

• Bitcoin prices experienced significant fluctuations during the study period. 

• Diagnostic tests confirmed that the DCL series can be represented by ARCH 
errors. 

• The best standard model for estimating the time series data of Bitcoin prices 

is the EGARCH model among other ARCH models, as this model has the 

lowest values for the statistical criteria used (H-Q, SIC, AIC) when 
comparing the studied models. 

• One of the main drawbacks of symmetric ARCH models is their focus on the 

symmetry property of phenomena. To address this gap, asymmetric ARCH 
models were introduced, which consider the characteristics of asymmetric 

phenomena. 
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Recommendations: 

 
Based on this study, we recommend that all interested parties increase their use 

of heterogeneous models due to their ability to capture volatility (risks). We also 

advise careful selection of the appropriate model based on the shape and 
characteristics of the time series data to avoid errors in estimation and prediction 

processes. It is preferable to use relatively long periods for the data of the series 

under study to reveal the serial correlation and non-stationarity of the conditional 
variance among the observations of the series in question. 
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