International oil prices and sectoral stock prices: An asymmetric kernel and nonlinear autoregressive distributed lag analysis

Authors

  • Jean Michel Banto Université́ Paris 1 Panthéon-Sorbonne, 75005, Paris, France
  • Libaud Rudy Aurelien Doho École Supérieure Africaine des Technologies del’ Information et de la Communication, Abidjan, Côte D’Ivoire
  • Sobom Matthieu Somé Université Thomas SANKARA, Ouagadougou, Burkina Faso

Keywords:

Oil price, Share prices, Associated kernel, NARDL

Abstract

In this work, we test, using the method of asymmetric kernels, the sensitivity of the sectoral indices of the WAMU zone to variations in the international price of oil between 2001 and 2021. The results of our analysis show that the indices linked to the financial, industrial, utilities, distribution, transportation and other sectors are very insensitive to oil prices. Moreover, according to our results, only the agricultural sector remains highly sensitive to variations in the price of oil. These results are reflected on the one hand by the fact that oil is not the main source of energy in the productive sphere of the secondary and tertiary sectors of the WAMU zone. On the other hand, these results highlight the interconnectivity that exists between the indices of the same sector of activity; as in the present case, those of raw materials, whether on a sub-regional and/or international scale. These results are robust and enrich the decision-making tools of financial market players in their investment strategy.

References

Abdullahi D. Ahmed & Rui Huo (2020). Linkages among energy price, exchange rates and stock markets: Evidence from emerging African economies. Applied Economics, https://doi.org/10.1080/00036846.2020.1726861

Acemoglu D. & Scott A. (1997). Asymmetric business cycles: Theory and time-series evidence. Journal of Monetary Economics, 40(3), pp. 501-533 https://doi.org/10.1016/S0304-3932(97)00049-4

Ang A. & Bekaert G. (2002). International asset allocation with regime shifts. Review of Financial Studies, 15 (4), pp. 1137-1187 https://doi.org/10.1093/rfs/15.4.1137

Anoruo E. (2011). Testing for linear and nonlinear causality between crude oil price changes and stock market returns. International Journal of Economic Sciences and Applied Research, 4 (3), pp. 75-92 http://hdl.handle.net/10419/66595

Antonakakis N., Cunado J., Filis G., Gabauer D. & De Gracia F.P. (2018). Oil volatility, oil and gas firms and portfolio diversification. Energy Economics, 70, pp. 499-515 https://doi.org/10.1016/j.eneco.2018.01.023

Apergis N. & Miller S.M. (2009). Do structural oil-market shocks affect stock prices? Energy Economics, 31(4), pp. 569-575 https://doi.org/10.1016/j.eneco.2009.03.001

Arouri M.E.H. & Nguyen D.K. (2010). Oil prices, stock markets and portfolio investment: Evidence from sector analysis in Europe over the last decade. Energy Policy, 38 (8), pp. 4528-4539 https://doi.org/10.1016/j.enpol.2010.04.007

Arouri M.E.H., Jouini J. & Nguyen D.K. (2012). On the impacts of oil price fluctuations on European equity markets: volatility spillover and hedging effectiveness. Energy Economics, 34 (2), pp. 611-617 https://doi.org/10.1016/j.eneco.2011.08.009

Arouri M.E.H., Jouini J. & Nguyen D.K. (2011). Volatility spillovers between oil prices and stock sector returns: Implications for portfolio management. Journal of International Money and Finance, 30 (7), pp. 1387-1405 https://doi.org/10.1016/j.jimonfin.2011.07.008

Arouri, M.E.H. & Rault, C., (2010). Les effets des fluctuations du prix du pétrole sur les marchés boursiers dans les pays du Golfe, More on the impact of oil prices on stock markets : new evidence from gcc countries. Revue économique, 61, pp. 945–959. https://doi.org/10.3917/reco.615.0945

Bachmeier L. (2008). Monetary policy and the transmission of oil shocks. Journal of Macroeconomics, 30 (4), pp. 1738-1755 https://doi.org/10.1016/j.jmacro.2007.11.002

Banerjee A., Dolado J. & Mestre R. (1998). Error-correction Mechanism Tests for Cointegration in a Single-equation Framework. Journal of Time Series Analysis, 19(3), pp. 267-283 https://doi.org/10.1111/1467-9892.00091

Basher S., Haug A. & Sadorsky P. (2012). Oil prices, exchange rates and emerging stock markets. Energy Economics, 34(1), pp. 227-240 https://doi.org/10.1016/j.eneco.2011.10.005

Basher, S.A. & Sadorsky P., (2006). Oil price risk and emerging stock markets. Global Finance Journal, 17(2), pp. 224–251. https://doi.org/10.1016/j.gfj.2006.04.001

Bildirici M.E. & Turkmen C. (2015). Nonlinear causality between oil and precious metals Resources. Policy, 46(2), pp. 202-211 https://doi.org/10.1016/j.resourpol.2015.09.002

Broadstock D.C., Cao H. & Zhang D. (2012). Oil shocks and their impact on energy related stocks in China. Energy Economics, 34(6), pp.1888-1895 https://doi.org/10.1016/j.eneco.2012.08.008

Calabrese R. & Zenga M. (2010). Bank loan recovery rates: Measuring and nonparametric density estimation. Journal of Banking & Finance, 34(5), pp. 903-911 https://doi.org/10.1016/j.jbankfin.2009.10.001

Chang C.L., Mcaleer M. & Tansuchat R.(2009). Volatility spillovers between returns on crude oil futures and oil company stocks. SSRN Electronic Journal, 41(10), pp. 4996-5008 Available at SSRN: https://ssrn.com/abstract=1406983

Cheema M.A. & Scrimgeour F. (2019). Oil prices and stock market anomalies. Energy Economics 83, pp. 578-587 https://doi.org/10.1016/j.eneco.2019.08.003

Chen S. X. (2000). Probability density function estimation using gamma kernels. Annals of the Institute of Statistical Mathematics 52, pp. 471–80. https://doi.org/10.1023/A:1004165218295

Chen S. S. (2009). Do higher oil prices push the stock market into bear territory? Energy Economics, 32(2), pp. 490-495. https://doi.org/10.1016/j.eneco.2009.08.018

Ciner C. (2013). Oil and stock returns: Frequency domain evidence. Journal of International Financial Markets, Institutions and Money, 23, pp. 1-11 https://doi.org/10.1016/j.intfin.2012.09.002

Cong, R.G, Wei Y.M, Jiao J.L., & Fan Y., (2008). Relationships between oil price shocks and stock market: An empirical analysis from China. Energy Policy, 36(9), pp. 3544-3553 https://doi.org/10.1016/j.enpol.2008.06.006

Creti A., Ftiti Z. & Guesmi K. (2014). Oil price and financial markets: Multivariate dynamic frequency analysis. Energy Policy, 73, pp. 245-258 https://doi.org/10.1016/j.enpol.2014.05.057

Degiannakis, S., Filis, G., & Arora, V. (2018). Oil Prices and Stock Markets: A Review of the Theory and Empirical Evidence. The Energy Journal, 39(5), 85–130. https://www.jstor.org/stable/26534476

Díaz, A. & Jareño, F. (2009). Explanatory factors of the inflation news impact on stock returns by sector: The Spanish case. Research in International Business and Finance, 23(3), pp. 349−368. https://doi.org/10.1016/j.ribaf.2008.12.001

Doho A. R., Somé S. M. & Banto J.M. (2022). Inflation and west African sectoral stock price indices: An asymmetric kernel method analysis. Emerging Markets Review. https://doi.org/10.1016/j.ememar.2022.100987

Driesprong G., Jacobsen B. & Maat B. (2008). Striking oil: another puzzle? Journal of Financial Economics, 89 (2), pp. 307-327 https://doi.org/10.1016/j.jfineco.2007.07.008

Dutta A. (2017). Oil price uncertainty and clean energy stock returns: New evidence from crude oil volatility index. Journal of Cleaner Production, 164, pp. 1157-1166 https://doi.org/10.1016/j.jclepro.2017.07.050

Eggoh J. C. (2008). Croissance économique et développement financier : éléments d'analyse théorique et empirique. Orleans University (France) https://www.theses.fr/2009ORLE0506

Enwereuzoh P.A, Odei-Mensah J. & Junior P. O. (2021). Crude oil shocks and African stock markets. Research in International Business and Finance, 55, pp.101-346 https://doi.org/10.1016/j.ribaf.2020.101346

Faff, R.W. & Brailsford J.T., (1999). Oil price risk and the Australian stock market. Journal of Energy Finance & Development, 4(1),pp. 69-87. https://doi.org/10.1016/S1085-7443(99)00005-8

Fall F.S, Tchuigoua H. T., Vanhems & Simar L. (2021). Gender effect on microfinance social efficiency : A robust nonparametric approach. European Journal of Operational Research, 295(2), pp. 744-757 https://doi.org/10.1016/j.ejor.2021.03.020

Fasanya I. O., Oyewole O.J., Adekoya O. B. & Badaru F. O.(2021). Oil price and stock market behaviour in GCC countries: Do asymmetries and structural breaks matter? Energy Strategy Reviews, 36, pp.100-682 https://doi.org/10.1016/j.esr.2021.100682

Filis G. (2010). Macro economy, stock market and oil prices: do meaningful relationships exist among their cyclical fluctuations? Energy Economics, 32(4), pp. 877-886 https://doi.org/10.1016/j.eneco.2010.03.010

Fisher I. (1930). The theory of interest. New York: The Macmillan Company, https://dspace.gipe.ac.in/xmlui/bitstream/handle/10973/174/1-ISEC-010193.pdf?sequence=1&isAllowed=y

Gjerde Ø. & Saettem F. (1999). Causal relations among stock returns and macroeconomic variables in a small, open economy. Journal of International Financial Markets, Institutions and Money, 9(1), pp. 61-74 https://doi.org/10.1016/S1042-4431(98)00036-5

Gogineni S. (2010). Oil and the stock market: An industry level analysis. Financial Review, 45(4), pp. 995-1010 https://doi.org/10.1111/j.1540-6288.2010.00282.x

Gospodinov N. & Hirukawa M. (2012). Nonparametric estimation os scalar diffusion models of interest rates using asymmetric kernels. Journal of Empirical Finance, 19(4), pp. 595-609 https://doi.org/10.1016/j.jempfin.2012.04.001

Gourene G. A., Mendy P. & Ake G. M.(2019). Multiple time-scales analysis of global stock markets spillovers effects in African stock markets. International Economics, 157, pp. 82-98 https://doi.org/10.1016/j.inteco.2018.09.001

Gourene G. A. & Mendy P. (2018). Oil prices and African stock markets co-movement: A time and frequency analysis. Journal of African Trade, 5, (1–2), pp. 55-67 https://doi.org/10.1016/j.joat.2018.03.002

Gozgor G. & Kablamaci B. (2014). The linkage between oil and agricultural commodity prices in light of the perceived global risk. Agricultural Economics, 60 (7), pp. 332-342 https://doi.org/10.17221/183/2013-AGRICECON

Gupta, R., Kean, G.J., Tsebe, M.A., Tsoanamatsie, N. & Sato, J.R. (2014). Time-varying causality between oil and commodity prices in the presence of structural breaks and nonlinearity. Department of Economics Working Paper Series, University of Pretoria, South Africa. https://econpapers.repec.org/paper/prewpaper/201469.htm

Hamdi B., Aloui F. & Tiwari A. (2019). Relationship between the oil price volatility and sectoral stock markets in oil-exporting economies: Evidence from wavelet nonlinear denoised based quantile and granger-causality analysis. Energy Economics, 80, pp. 536-552 https://doi.org/10.1016/j.eneco.2018.12.021

Hansen B.E. & Seo B. (2002). Testing for two-regime threshold cointegration in vector error-correction models. Journal of Econometrics, 110(2), pp. 293-318 https://doi.org/10.1016/S0304-4076(02)00097-0

Hatemi-J. (2012). Asymmetric causality tests with an application. Empirical Economics, 43(1), pp. 447-456 https://doi.org/10.1007/s00181-011-0484-x

Hiemstra C. & Jones J.D. (1994). Testing for Linear and Nonlinear Granger Causality in the Stock Price- Volume Relation. Journal Of Finance, 49(5), pp. 1639-1664 https://doi.org/10.2307/2329266

Hong H., Torous W. &Valkanov R.(2007). Do industries lead stock markets? Journal of Financial Economics, 83 (2), pp. 367-396 https://doi.org/10.1016/j.jfineco.2005.09.010

Hong H.& Stein J.C. (1999). A unified theory of underreaction, momentum trading, and overreaction in asset markets. Journal Of Finance, 54 (6), pp. 2143-2184 https://doi.org/10.1111/0022-1082.00184

Huang S., An H., Gao X., Sun X. (2017). Do oil price asymmetric effects on the stock market persist in multiple time horizons? Applied Energy, 185(2), pp. 1799-1808 https://doi.org/10.1016/j.apenergy.2015.11.094

Jawadi F., Louhichi W. & Chefou A. I. (2015). Testing and modeling jump contagion across international stock markets: A nonparametric intraday approach. Journal of Financial Markets, 26, pp. 64-84 https://doi.org/10.1016/j.finmar.2015.09.004

Jawadi F., Louhichi W., Ameur H. B., & Chefou A. I. (2016). On oil-US exchange rate volatility relationships: An intraday analysis. Economic Modelling, 59, pp. 329-334 https://doi.org/10.1016/j.econmod.2016.07.014

Jiang W. & Liu Y.(2021). The asymmetric effect of crude oil prices on stock prices in major international financial markets. The North American Journal of Economics and Finance, 56, pp. 101-357 https://doi.org/10.1016/j.najef.2020.101357

Jones C.M. & Kaul G. (1996). Oil and the stock markets. Journal of Finance, 51(2), pp. 463-491 https://doi.org/10.1111/j.1540-6261.1996.tb02691.x

Joo Y. C. & Park S. Y., (2021). The impact of oil price volatility on stock markets: Evidences from oil-importing countries. Energy Economics, 101, pp., 105-413 https://doi.org/10.1016/j.eneco.2021.105413

Kahneman D. & Tversky A. (1979). Prospect theory: an analysis of decision under risk. Econometrica, 47 (2), pp. 263-292 https://doi.org/10.2307/1914185

Kang S.H., McIver R., Yoon S.-M. (2017). Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets. Energy Economics, 62, pp. 19-32 https://doi.org/10.1016/j.eneco.2016.12.011

Kapetanios G., Shin Y., Snell A. (2006). Testing for cointegration in nonlinear smooth transition error correction models. Econometric Theory, 22, pp. 279-303 https://doi.org/10.1017/S0266466606060129

Kayalar D.E., Küçüközmen C.C. & Selcuk-Kestel A.S. (2017). The impact of crude oil prices on financial market indicators: copula approach. Energy Economics, 61, pp. 162-173 https://doi.org/10.1016/j.eneco.2016.11.016

Kilian L. & Park C. (2009). The impact of oil price shocks on the US stock market International Economic Review, 50(4), pp. 1267-1287 https://doi.org/10.1111/j.1468-2354.2009.00568.x

Kocaarslan B., Sari R., Gormus A. & Soytas U. (2017). Dynamic correlations between BRIC and US stock markets: The asymmetric impact of volatility expectations in oil, gold and financial markets. Journal of Commodity Markets, 7, pp. 41-56 https://doi.org/10.1016/j.jcomm.2017.08.001

Kocaarslan B., Sari R., Yildirim E. U. and Soytas U. (2019). The Changing Role of Financial Stress, Oil Price, and Gold Price in Financial Contagion among US and BRIC Markets. International Review of Finance 19(3), pp. 541-574 https://doi.org/10.1111/irfi.12189

Kokonendji, C.C., & Somé, S.M. (2018). On multivariate associated kernels to estimate general density functions. Journal of the Korean Statistical Society, 47, 112–126 https://doi.org/10.1016/j.jkss.2017.10.002.

Kokonendji, C.C. & Somé, S.M. (2021). Bayesian bandwidths in semiparametric modelling for nonnegative orthant data with diagnostics. Stats 4 (1), 162-183. https://doi.org/10.3390/stats4010013

Kouakou K. (2011). Economic growth and electricity consumption in Cote d'Ivoire: Evidence from time series analysis. Energy Policy, 39(6), pp. 3638-3644 https://doi.org/10.1016/j.enpol.2011.03.069

Kumar S. (2019). Asymmetric impact of oil prices on exchange rate and stock prices. The Quarterly Review of Economics and Finance, 72, pp. 41-51 https://doi.org/10.1016/j.qref.2018.12.009

Lardic S. & Mignon V. (2002). Econometrie des series temporelles macroeconometriques et financieres. Ed Economica.

Lee, B.-J., Chin W. Y. & Bwo-Nung H.(2012). Oil price movements and stock markets revisited : A case of sector stock price indexes in the G-7 countries. Energy Economics, 34(5), p. 1284-1300. https://doi.org/10.1016/j.eneco.2012.06.004

Lee K., Ni S. (2002). On the dynamic effects of oil price shocks: A study using industry level data. Journal of Monetary Economics, 49(4), pp. 823-852 https://doi.org/10.1016/S0304-3932(02)00114-9

Lee W.C. & Lin H.N. (2012). Threshold effects in the relationships between USD and gold futures by panel smooth transition approach. Applied Economics Letters, 19(11), pp. 1065-1070 https://doi.org/10.1080/13504851.2011.613747

Libengué Dobélé-Kpoka, F.G.B. & Kokonendji, C.C. (2017). The mode-dispersion approach for constructing continuous associated kernels. Afrika Statistika 12 (3), 1417-1446 http://dx.doi.org/10.16929/as/2017.1417.111

Lv X., Lien D. & Yu C. (2020). Who affects who? Oil price against the stock return of oil-related companies: Evidence from the U.S. and China. International Review of Economics & Finance, 67, pp. 85-100 https://doi.org/10.1016/j.iref.2020.01.002

Malik F. & Ewing B.T. (2009). Volatility transmission between oil prices and equity sector returns. International Review of Financial Analysis, 3(18), pp. 95-100 https://doi.org/10.1016/j.irfa.2009.03.003

Masih R., Peters S. & Mello L.D. (2011). Oil price volatility and stock price fluctuations in an emerging market: evidence from South Korea. Energy Economics, 33(5), pp. 975-986 https://doi.org/10.1016/j.eneco.2011.03.015

Miller J.I. & Ratti R.A. (2009). Crude oil and stock markets: Stability, instability, and bubbles Energy Economics, 31, pp. 559-568 https://doi.org/10.1016/j.eneco.2009.01.009

Mohanty S.K., Nandha M., Turkistani A.Q. & Alaitani M.Y. (2011). Oil price movements and stock market returns: Evidence from gulf cooperation council (GCC) countries. Global Finance Journal, 22(1), pp. 42-55 https://doi.org/10.1016/j.gfj.2011.05.004

Mork K.A. (1989). Oil and the macroeconomy when prices go up and down: An extension of Hamilton's Results. Journal of Political Economy, 97(3), pp. 740-744 https://www.jstor.org/stable/1830464

Nadaraya, E. A. (1964). On estimating regression. Theory of Probability and its Applications 9:141–42. http://dx.doi.org/10.1137/1109020

Nandha M. & Faff R.(2008). Does oil move equity prices? a global view. Energy Economics, 30(3), pp. 986-997 https://doi.org/10.1016/j.eneco.2007.09.003

Narayan P.K. & Sharma S.S. (2011). New evidence on oil price and firm returns Journal of Banking and Finance, 35(12), pp. 3253-3262 https://doi.org/10.1016/j.jbankfin.2011.05.010

Narayan P.K. & Sharma S.S. (2014).Firm return volatility and economic gains: the role of oil prices. Economic Modelling, 38, pp. 142-151 https://doi.org/10.1016/j.econmod.2013.12.004

Nazlioglu S. & Soytas U. (2012). Oil price, agricultural commodity prices, and the dollar: a panel cointegration and causality analysis. Energy Economics, 34, pp. 1098-1104 https://doi.org/10.1016/j.eneco.2011.09.008

Nazlioglu S. & Soytas U. (2011). World oil prices and agricultural commodity prices: evidence from an emerging market. Energy Economics, 33(3), pp. 488-496 https://doi.org/10.1016/j.eneco.2010.11.012

Paris A. (2018). On the link between oil and agricultural commodity prices: Do biofuels matter? International Economics, 155, pp. 48-60 https://doi.org/10.1016/j.inteco.2017.12.003

Pesaran M.H., Shin Y. & Smith R.J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3), pp. 289-326 https://doi.org/10.1002/jae.616

Phan D.H.B., Sharma S.S. & Narayan P.K. (2015). Oil price and stock returns of consumers and producers of crude oil. Journal of International Financial Markets Institutions and Money, 34, pp. 245-262 https://doi.org/10.1016/j.intfin.2014.11.010

Psaradakis Z., Sola M. & Spagnolo F. (2004). On Markov error-correction models with an application to stock prices and dividends. Journal of Applied Econometrics, 19(1), pp. 69-88 https://doi.org/10.1002/jae.729

Rafiq S. & Bloch H.(2016). Explaining commodity prices through asymmetric oil shocks: Evidence from nonlinear models. Resources Policy,50, pp. 34-48 https://doi.org/10.1016/j.resourpol.2016.08.005

Raza N., Shahzad S. J. H., Tiwari A. K. & Shahbaz M. (2016). Asymmetric impact of gold, oil prices and their volatilities on stock prices of emerging markets. Resources Policy, 49, pp. 290-301 https://doi.org/10.1016/j.resourpol.2016.06.011

R Development Core Team, (2022). R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://cran.r-project.org/.

Renault O. & Scaillet O. (2004). On the way to recovery: A nonparametric biais free estimation of recovery rate densities. Journal of Banking & Finance, 28(12), pp. 915-2931 https://doi.org/10.1016/j.jbankfin.2003.10.018

Sadorsky P., (1999). Oil price shocks and stock market activity. Energy Economics, 21(5), pp. 449-469 https://doi.org/10.1016/S0140-9883(99)00020-1

Shin, Y., Yu, B. & Greenwood-Nimmo, M.J. (2014). Modelling Asymmetric Cointegration and Dynamic Multipliers in a Nonlinear ARDL Framework. In William C. Horrace and Robin C. Sickles (Eds.), Festschrift in Honor of Peter Schmidt: Econometric Methods and Applications, pp. 281-314. New York (NY): Springer Science & Business Media. https://doi.org/10.1007/978-1-4899-8008-3_9

Somé, S.M. (2022). Bayesian selector of adaptive bandwidth for gamma kernel density estimator on [0, ∞). Communications in Statistics : Simulations and computations, 51 (12), pp. 7287-7297. https://doi.org/10.1080/03610918.2020.1828921

Somé, S.M. & Kokonendji, C.C. (2022). Bayesian selector of adaptive bandwidth for multivariate gamma kernel estimator on [0, ∞)d. Journal of Applied Statistics, 49 (7), pp. 1692-1713. https://doi.org/10.1080/02664763.2021.1881456

Somé, S.M., & Kokonendji, C.C. (2016). Effects of associated kernels in nonparametric multiple regressions. Journal of Statistical Theory and Practice, 10, pp. 456–471. https://doi.org/10.1080/15598608.2016.1160010

Somé, S.M., Kokonendji, C.C., Ibrahim, M. (2016). Associated kernel discriminant analysis for multivariate mixed data. Electronic Journal of Applied Statistical Analysis, 9(2), pp. 385–399. https://doi.org/10.1285/i20705948v9n2p385

Sugimoto K., Matsuki T. & Yoshida Y. (2014). The global financial crisis: An analysis of the spillover effects on African stock markets. Emerging Markets Review, 21, pp. 201-233 https://doi.org/10.1016/j.ememar.2014.09.004

Tchatoka F.D., Masson V. & Parry S. (2019). Linkages between oil price shocks and stock returns revisited. Energy Economics, 82, pp. 42-61 https://doi.org/10.1016/j.eneco.2018.02.016

Tiwari A. K., Mishr B. R. & Solarin S. A. (2021). Analysing the spillovers between crude oil prices, stock prices and metal prices: The importance of frequency domain in USA. Energy, 220, pp. 119-732 https://doi.org/10.1016/j.energy.2020.119732

Tugcu C.T. &Topcu M. (2018). Total, renewable and non-renewable energy consumption and economic growth: revisiting the issue with an asymmetric point of view. Energy, 152, pp. 64-74 https://doi.org/10.1016/j.energy.2018.03.128

Wang Y., Wu C. & Yang W. (2013). Oil price shocks and stock market activities: Evidence from oil-importing and oil-exporting countries. Journal of Comparative Economics, 41(4), pp. 1220-1239 https://doi.org/10.1016/j.jce.2012.12.004

Watson, G. S. (1964). Smooth regression analysis. Sankhya: The Indian Journal of Statistics, 6(4), pp. 359–72. https://www.jstor.org/stable/25049340

Wansouwé,W.E., Somé, S.M., & Kokonendji, C.C. (2016) Ake: an R Package Discrete continuous associated kernel estimations. The R Journal, 8,259–276. https://doi.org/10.32614/RJ-2016-045

Wen X., Guo Y., Wei Y. & Huang D. (2014). How do the stock prices of new energy and fossil fuel companies correlate? Evidence from China. Energy Economics, 41, pp. 63-75 https://doi.org/10.1016/j.eneco.2013.10.018

Zarour B. (2006). Wild oil prices, but brave stock markets! The case of Gulf Cooperation Council (GCC) stock markets. Operational Research, 6(2), 145-162. https://doi.org/10.1007/BF02941229

Zhang D. & Cao H. (2013). Sectoral responses of the Chinese stock market to international oil shocks. Emerging Markets Finance and Trade, 49(6), pp. 37-51 https://doi.org/10.2753/REE1540-496X490603

Zhu H., Su X., You W. & Ren Y. (2016). Asymmetric effects of oil price shocks on stock returns: evidence from a two-stage Markov regime switching approach. Applied Economics, 47 (25), pp. 2491-2507 https://doi.org/10.1080/00036846.2016.1240351

Published

2025-09-30

How to Cite

Banto, J. M., Doho, L. R. A., & Somé, S. M. (2025). International oil prices and sectoral stock prices: An asymmetric kernel and nonlinear autoregressive distributed lag analysis. International Journal of Economic Perspectives, 19(10), 1–32. Retrieved from http://ijeponline.org/index.php/journal/article/view/1164

Issue

Section

Peer Review Articles