How to Cite:

Khaldi, N., & Menasri, Y. (2025). The role of lean production principles in achieving environmental sustainability and enhancing supply chain efficiency: A case study of the production systems at Toyota and Boeing. *International Journal of Economic Perspectives*, 19(4), 1545–1564. Retrieved from https://ijeponline.org/index.php/journal/article/view/977

The role of lean production principles in achieving environmental sustainability and enhancing supply chain efficiency: A case study of the production systems at Toyota and Boeing

Naima KHALDI

Doctor, University of Tissemsilet, Algeria Email: naima.khaldi@univ-tissemsilet.dz

Yahia MENASRI

University of Khemis Miliana, Algeria Email: y.menasri@univ-dbkm.dz

> Abstract --- In recent decades, industrial production has undergone significant transformations amid growing environmental challenges. These changes have driven governments and corporations to prioritize sustainability by conserving resources and reducing pollution and waste. Within this context, the study aims to explore the concept of Lean Production as a strategic approach to improving efficiency and minimizing waste-helping organizations meet shifting market demands while mitigating environmental impact. The study concludes that applying lean production principles significantly contributes to the sustainability of supply chains by reducing resource consumption and lowering environmental emissions. The findings reveal that organizations adopting these principles are able to strike a balance between economic efficiency and environmental performance. By enhancing process flow and managing inventory effectively, companies can cut costs and reduce environmental impact, thereby improving their long-term sustainability in the market.

Keywords---Lean Production, Environmental Performance, Environmental Sustainability, Supply Chains, Toyota Production System.

Introduction

Lean Production (LP) refers to a comprehensive and integrated philosophy of managing production and operations, based on the continuous flow of products in response to customer demand. It eliminates all steps and procedures that do not add value from the customer's perspective during the manufacturing process. Traditionally, mass production was favored for its ability to reduce setup costs by producing large batches. However, this approach has proven problematic due to increased inventory levels, delayed detection of quality issues, and higher inspection and rework costs compared to smaller batch production. Large batches also reduce flexibility and hinder responsiveness to changes in demand or product improvement. In contrast, lean systems aim to use the smallest batch sizes possible (a "lot" being the quantity of materials processed together).

A key focus of lean manufacturing philosophy is the elimination of all forms of waste. Properly identifying and eliminating waste leads to more efficient resource usage, higher product quality, cost reduction, greater customer satisfaction, and ultimately, increased profitability. Waste refers to any activity that consumes resources without creating value from the customer's point of view—and thus must be targeted for continuous improvement.

Lean manufacturing helps reduce waste, minimize inventory, increase flexibility and responsiveness, improve quality, and ultimately enhance customer satisfaction—all while reducing costs through its various tools and techniques. It offers a process-oriented approach that aims to meet demand precisely, in terms of quantity and quality, without excess. Unlike traditional systems, lean emphasizes waste elimination and rapid response, which contribute to minimizing inventory levels.

Lean production principles—which focus on eliminating waste and improving process flow—play a crucial role in promoting **environmental sustainability**. By reducing resource and energy waste and improving their efficiency of use, companies can significantly lower their environmental footprint and contribute positively to the environment. This impact extends beyond production to the entire **supply chain**, where lean principles improve resource management and reduce environmental harm at every stage.

The integration of lean principles into supply chain operations is vital for achieving synergy between efficient performance and environmental responsibility. Organizations that adopt lean techniques benefit from reduced resource consumption and harmful emissions, thus advancing environmental sustainability. Furthermore, this approach leads to enhanced product and service quality, greater customer satisfaction, and improved financial outcomes.

Supply chain management is a key domain that can greatly benefit from lean principles—particularly through improved coordination between suppliers and customers, effective inventory strategies, cost savings, and reduced environmental impact. This integration of lean and sustainability strategies equips companies to respond more efficiently to environmental challenges and regulatory requirements.

Boeing and Toyota are leading examples of corporations that have successfully implemented lean production principles to achieve environmental sustainability and boost supply chain efficiency. Toyota adopted the "Lean Manufacturing" approach, which helped reduce material and energy consumption while lowering carbon emissions. Boeing, in turn, utilized lean techniques to optimize resource usage in manufacturing—resulting in waste reduction, improved logistical efficiency, and enhanced environmental sustainability throughout production and supply processes.

Research Problem:

Given the growing importance of environmental sustainability, there is a pressing need to explore how lean production can serve as a tool to achieve this goal. This research aims to analyze the relationship between the application of lean production principles, environmental sustainability, and supply chain efficiency. It seeks to answer whether lean practices can effectively reduce the environmental impact of production activities and how they can be leveraged to strike a balance between economic efficiency and environmental stewardship within supply chains.

Research Questions:

- What are the key lean production principles that contribute to environmental sustainability within supply chains?
- What is the relationship between lean production and environmental sustainability?
- What challenges hinder the implementation of lean production in promoting sustainability?
- What best practices can be adopted to enhance environmental sustainability through lean production?
- How has lean implementation at companies like Boeing and Toyota contributed to environmental sustainability and supply chain enhancement?

Research Hypotheses:

- The application of lean production principles contributes to reducing environmental waste.
- Lean production improves the efficient use of natural resources and energy across supply chains.
- Enhancing supply chain sustainability through lean production strengthens a company's competitiveness and economic performance.
- Both Boeing and Toyota have successfully applied lean production principles, resulting in improved environmental sustainability and supply chain efficiency.

Previous Studies:

The key studies addressing the variables of this research are presented as follows:

• Study by Arawati Agus and Mohd Shukri Hajinoor, 2012: "Lean Production Supply Chain Management as a Driver Towards Enhancing

Product Quality and Business Performance: Case Study of Manufacturing Companies in Malaysia."

This study aims to understand the extent of lean production adoption in manufacturing companies in Malaysia by analyzing the perceptions of supply chain managers (SCM) or production managers regarding lean production practices and their performance levels in the sector. Malaysian manufacturing companies listed in the Federation of Malaysian Manufacturers Directory were selected for the research sample. Out of 300 targeted companies, 200 responded, representing a response rate of 67%. The results revealed a

strong correlation between lean production, product quality, and business performance. Furthermore, Structural Equation Modeling (SEM) indicated that "setup time reduction" was the most important factor linking lean production with product quality and business performance. Additionally, the Malaysian Lean Production Index (MLPI) score of 67.21 suggests that more efforts are needed to improve the implementation of lean supply chain management to enhance product quality and business performance.

Study by Sonal Choudharya, Rakesh Nayak, Manoj Dorac, Nishikant Mishrad, and Abhijeet Ghadgee, 2019: "An Integrated Lean and Green Approach for Improving Sustainability Performance: A Case Study of a Packaging Manufacturing SME in the U.K."

This study explores the integrated **Green Value Stream Mapping (GIVSM)** and examines the application of both lean and green manufacturing principles in the context of a small-to-medium-sized packaging manufacturing company in the United Kingdom. The results of applying GIVSM revealed that the simultaneous implementation of lean and green principles results in a **synergistic effect**, improving both operational efficiency and environmental performance. Moreover, the study suggests a continuous improvement framework based on sustainable procurement to address the differences between lean and green approaches. It also provides practical guidance for practitioners to implement similar improvement projects and highlights opportunities for expanding academic research on the integrated lean-green approach in other industrial sectors.

Study by Sergio Aguado, Roberto Alvarez, Rosario Domingo, 2013: "Model of Efficient and Sustainable Improvements in a Lean Production System through Processes of Environmental Innovation."

This study presents a general approach based on **environmental innovation** to help companies balance efficiency and sustainability. The objective is to add value to products, thereby enhancing competitiveness in the 21st-century global market. The case study demonstrates that applying environmental innovation can lead to improvements in costs, revenues, social responsibility, and sustainability by transforming traditional production systems into lean and sustainable systems.

First: Lean Production: Concepts and Principles

The concept of **lean production** emerged as a modern approach aimed at achieving maximum value with minimal resources, through the elimination of unnecessary activities and optimizing process flow.

1. Nature of Lean Production

The term **lean production** was introduced in 1990 in a book titled *The Machine That Changed the World* by James P. Womack. Since its introduction, the concept of lean manufacturing has gained widespread attention in both literature and practice. It is arguably one of the dominant strategies in modern production systems. Lean production is one of the most prominent modern concepts aimed at improving industrial process efficiency, reducing resource waste, and achieving maximum value for customers. This concept has gained significant popularity due to its role in achieving high production efficiency, balancing cost reduction, and improving quality.

Lean production originated in Japan after World War II, particularly within **Toyota**, which was facing a lack of resources and capital for expansion. Japanese engineer **Taiichi Ohno**, in collaboration with **Shigeo Shingo**, developed a philosophy focused on improving efficiency by using the least amount of resources to achieve maximum value. This system, later known as the **Toyota Production System (TPS)**, revolutionized the industrial sector in Japan and helped make Toyota one of the largest car manufacturers in the world. This success attracted international companies' interest in applying the TPS model.¹

1.1 Definition of Lean Production:

Lean manufacturing is a synchronized, integrated, and comprehensive methodology that includes a broad array of management tools, such as **Total Quality Management (TQM)**, **Total Productive Maintenance (TPM)**, **Just-In-Time (JIT)**, **teamwork**, **cellular layout**, and **supplier management**, all in pursuit of a streamlined production process that can deliver the right product, at the right place and time, at the minimum possible cost by eliminating all forms of waste in the system.ⁱⁱ

Currently, lean production is one of the most successful strategies to improve organizational competitiveness. Approximately 60% of U.S. companies use it to improve their operational processes, and it has become increasingly common in Europe, particularly in industrial and service companieⁱⁱⁱs. Below is a collection of varying definitions of lean production, arranged in chronological order based on their emergence^{iv}.

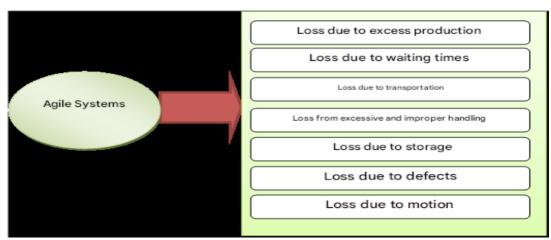
Table 01: Definitions of Lean Production from Different Perspectives

Definition	Source
Lean production is a series of activities that start with product	
development, then purchasing and manufacturing, and end with	(Karlsson; Åhl
distribution. The goal is to improve performance by increasing	Ström. 1996,
productivity, reducing time, and controlling costs. It distinguishes	p. 25)
between system performance, which includes outcomes like	·
efficiency and time reduction, and system constraints, which are	
the actions and principles applied to achieve the targeted	
performance.	
Lean manufacturing focuses on designing a flexible and responsive	(Feld, 2001, p.
production process, relying on continuous improvements through	06)
self-directed teams driven by performance metrics that meet	

customer requirements.	
1	(Elbert, 2013, p. 05)
μ , 1	(Bani Hamdan & Ali Al- Zabon, 2017, p. 154)

Source: Prepared by the researcher

Accordingly, it can be said that lean production is a set of applications (practices) that tend to eliminate waste manifestations from the system and rely on the maximum utilization of materials. It is also defined as the system that focuses on eliminating waste and unnecessary steps in the value chain and meeting customer demands and suggestions. Thus, it is a comprehensive and integrated production philosophy that includes production processes within the organization with strategic dimensions in streamlining operations starting from receiving raw materials from the supplier, then the processes, until delivery to the customer.


However, the book was not immune to criticism at various levels, like lean manufacturing was unreasonably glorified without any documentary evidence of its application in all industrial set up. Another criticism was workers in lean manufacturing setup work in tight compartment without any intrinsic motivation and autonomy. Lean production system was theoretical, highly superficial and infeasible where the actual was suppressed by what you supposed to be.

1-2 Objectives of Lean Manufacturing

The main objectives of lean manufacturing are the continuous elimination of all forms of waste in production processes through continuous improvement, in order to reduce production costs and increase outputs. In addition, there are other objectives including:

- **Reducing waste and defects**: Lean manufacturing aims to reduce defects and unnecessary material waste, including excessive use of raw material inputs, and prevent defects related to returned defective materials.^{vi}
- **Reducing production cycle times and waiting periods**: Reducing production cycle times and production waiting periods, reducing waiting times between processing stages, as well as reducing setup times and times for changing the product model.
- **Reducing inventory levels**: Lean manufacturing aims to reduce inventory levels at all stages of the production process, especially work-in-progress (WIP) inventory between production stages, as well as reducing other inventories and lowering the working capital requirement.
- **Improving worker productivity**: Worker productivity is improved by working to reduce the periods of worker idle time and regulating worker operating time. Meaning whether they are using all their efforts to increase productivity as

- much as possible.
- **Efficient use of equipment and space**: Efficient use of equipment and workspace is achieved through the removal of bottlenecks, maximizing the productivity rate of existing equipment, and reducing machine downtime.
- **Flexibility**: This means having the capability to produce a variety of products with high flexibility, while working to reduce changeover time and its resulting costs, through pull production and the use of (JIT) which reduces inventory and capital requirements.

Figure 1-01: The Seven Types of Waste **Source**: Finch, Byron J. *Operations Now: Supply Chain Profitability and Performance*, 3rd Edition, McGraw- Hill, p. 575.

1-3 Lean Production Tools:

These tools help the company solve waste-related problems and eliminate them to achieve its goals of reducing costs, and thereby increasing the company's value and profitability. One such tool is the "5S" system, which focuses on organizing and arranging the workplace to increase productivity. It involves five steps: Sort, Set in order, Shine, Standardize, and Sustain. Another tool is "Kaizen", or continuous improvement, a philosophy that encourages regular, small, yet sustainable steps to improve processes. Additionally, the "Just-in-Time" (JIT) tool aims to produce only the necessary quantities when they are needed, thus helping reduce inventory and waste. Furthermore, the "Kanban" tool aids in managing workflow by using visual boards that make it easier to monitor the progress of processes. These tools, when used together, enhance efficiency and reduce waste, aligning with the objectives of lean production to achieve maximum value with minimal cost and resources.

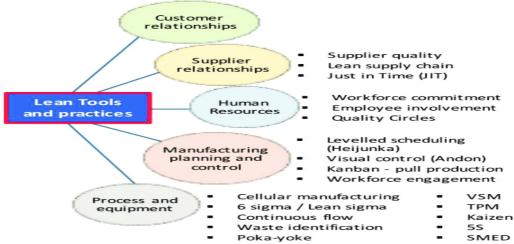


Figure 2-02: Lean Production Tools

1-4 Principles of Lean Production

Lean production is based on a number of fundamental principles that are considered the foundation of this system. These principles aim to improve operational performance and reduce waste at all stages of production. These principles can be summarized as follows:viii

- Waste Reduction (Muda Reduction): This principle is the core of lean production and aims to reduce all forms of waste in the production process. Waste in lean production is defined as any activity that does not add direct value to the customer, such as overproduction, waiting, transportation, excessive processing, inventory waste, unnecessary movements, and defects. The focus is on reducing these forms, which contributes to cost reduction and improves resource utilization efficiency. **ix*
- Quality Improvement: Quality in lean production is not only a customer requirement but also part of the organizational culture. This principle relies on enhancing quality improvement strategies and reducing defects in products. This is achieved by applying methods like "building quality from the start" (Jidoka), where production automatically stops upon detecting a problem to avoid mass production of defects that would require costly corrections later.
- **Flexibility**: Lean production enables organizations to achieve high flexibility in adapting to market changes and customer needs. This is done by improving the internal design of the production process, reducing setup times, and responding quickly to changes in demand volume, which helps improve customer satisfaction and reduces excess inventory.
- **Continuous Improvement (Kaizen)**: Kaizen is a Japanese term meaning "continuous improvement" and is one of the core concepts in lean production. This principle refers to the ongoing pursuit of improving all aspects of production, including processes and individuals. Kaizen is implemented continuously through small, incremental improvements in processes, involving all employees in proposing solutions.*
- Customer Focus: One of the main goals of lean production is to meet

customer needs at the lowest possible cost and with the highest possible quality. This principle places the customer at the center of the production process, meaning every step in the production process must add tangible value to the customer.xi

The fundamental principle in lean production is that it means reducing costs through continuous improvement, which ultimately reduces the cost of services and products, thus increasing profits. Lean focuses on reducing waste or inefficiencies and on maximizing or fully utilizing activities and actions that add value from the customer's perspective, which is the value that compensates anything the customer is willing to pay for, whether in the form of a product or service.xii

2. Environmental Performance and Environmental Sustainability 2-1: Definition of Environmental Performance

Under all the new global regulations related to environmental protection, contemporary organizations are required to comply with local and international environmental laws and regulations regarding their designs, constructions, operations, and production stages, thus carrying the responsibility of continuous development as well as improving their activities by enhancing environmental performancexiii. Environmental performance is a newly developed concept that has evolved with the development of sustainable development concepts. It concerns preserving the environment and natural resources from pollution and depletion. The environmental performance of an organization is measured by the negative impacts of its activities and the methods and tools it provides to carry out the necessary remedies. Environmental performance is one of the practical ways an organization can rely on to set and achieve its goals in the field of the environment. It is a management method that encourages the organization to be more competitive, innovative, and responsible at the environmental level. Environmental performance has four dimensions, the most important of which are improving products and processes and improving relationships with stakeholders.

 Table 02 : Environmental Performance Matrix

Operations and Results	Internal Axis	External Axis
Operations	Improving Products and Processes	Improving Relationships with Stakeholders
Results	Compliance with Laws and Regulations Achieving Financial Returns	Positive Environmental Impacts Improving the Organization's Reputation and Image

Source: Angèl Douhou-Renaud, Environmental Performance Assessment Tools: Audits and Environmental Indicators, Congress of the Association Francophone de Comptable, "The Place of the European Dimension of Accounting, Control and Auditing", May 27-29, 2009, Strasbourg, France, p. 3.

2-2: Environmental Sustainability

Environmental sustainability is the ability to maintain the qualities that are valued in the physical environment. For example, most people want to sustain:

- Human life
- The capabilities that the natural environment has to maintain living conditions for people and other species (e.g., clean water and air, a suitable climate)
- The aspects of the environment that produce renewable resources such as water, timber, fish, solar energy
- The functioning of society, despite non-renewable resource depletion
- The quality of life for all people, the livability and beauty of the environment Threats to these aspects of the environment mean that there is a risk that these things will not be maintained. For example, large-scale extraction of non-renewable resources (such as minerals, coal, and oil) or damage to the natural environment can create threats of serious decline in quality or destruction or extinction.xiv

Second: Application of Lean Production Principles and Their Role in Enhancing Environmental Sustainability and Managing It within the Supply Chain.

At a time when the world is witnessing radical environmental and economic changes, environmental sustainability has become a vital and urgent issue in all sectors of production and industry. Lean production comes as a framework that enhances the achievement of production efficiency while reducing both costs and environmental impact simultaneously.

1. The Relationship Between Lean Production and Environmental Sustainability

Lean production relies on strategies that target the efficient management of resources, leading to the reduction of the use of natural resources and energy. To achieve this goal, companies applying lean production adopt tools and processes that conserve resources and use them effectively, through the following methods:**v

- **Value Stream Mapping**: Value stream mapping is one of the essential tools in lean production. By creating a comprehensive map of the production process, organizations can identify areas where resources are consumed without adding actual value. For example, value stream mapping helps reduce excess steps and use materials and resources only in the correct places, thus reducing the need for excessive raw materials or unnecessary energy consumption.
- **Just-In-Time Production System**: This system is based on producing only the required quantities upon demand, which leads to the reduction of excess inventory. Reducing inventory helps cut down costs associated with storing materials, as well as saving resources such as electricity and water, because storage processes often lead to additional energy costs. This also reduces the need for natural resources required in production.
- Improving Product Design and Manufacturing: Lean production relies on designing products and production processes in a way that increases the efficiency of material consumption. Reducing the materials used in manufacturing a particular product without affecting its quality contributes

to environmental sustainability. Continuous improvement processes (Kaizen) are also implemented to ensure periodic improvement in resource consumption by seeking new opportunities to reduce material usage and decrease the need for primary resources.

• Collaboration Between Different Departments: Lean production focuses on enhancing collaboration between various departments to ensure optimal resource utilization. For example, continuous meetings between different work teams improve coordination and reduce resource waste. It also enables the pre-planning of the materials required in production without excess.xvi

2. Implementing Lean Production to Enhance Supply Chain Efficiency and Environmental Sustainability

A sustainable supply chain is one of the core pillars for achieving environmental sustainability in industry, as it contributes to improving operational efficiency and reducing the environmental impact across all stages of production and distribution. Lean production comes as an effective tool for integrating efficiency and sustainability principles into the supply chain, thus enhancing companies' ability to compete in global markets and achieve their environmental and social goals. Integrating lean production principles with sustainability also contributes to reducing carbon footprints, improving resource consumption, and supporting the circular economy, which enhances organizations' ability to adapt to market demands and environmental responsibility.

The sustainable supply chain and environmental practices focus on managing the flow of materials, information, and services in a way that reduces environmental impact and enhances economic and social efficiency. Incorporating lean production principles into a sustainable supply chain is a vital step towards achieving a balance between environmental and economic performance.xvii

This includes designing the supply chain in a way that reduces the consumption of natural resources and energy while focusing on minimizing waste and harmful emissions. This is achieved by selecting suppliers who adhere to environmental standards, using recyclable materials, and adopting clean manufacturing technologies.

In this context, using recycled materials, i.e., designing products for recyclability by ensuring that they can be easily disassembled and their components recycled, reduces waste and enhances resource utilization efficiency. Reducing excess inventory by applying Just-In-Time principles helps minimize the need to store large quantities of raw materials and reduces the risk of spoilage or contamination.

3. Challenges Facing the Implementation of Lean Production and Improving Supply Chain Efficiency

Despite the many advantages of applying lean production principles in a sustainable supply chain, there are several challenges companies may face in this context. Overcoming these challenges requires well- thought-out strategies and

continuous efforts to ensure the achievement of environmental and economic goals:xviii

- **High Technical Development Costs**: Implementing lean production principles and adopting new sustainability technologies require significant financial investments initially, such as purchasing modern equipment or implementing advanced management systems. Companies need to assess the potential returns from these investments over the long term, which requires careful study to ensure financial sustainability.
- **Coordination Complexity Among Partners**: Supplier and partner capabilities in adopting lean production principles may differ, leading to difficulties in coordination and uniform execution. Companies may face challenges in reconciling different work cultures and diverse environmental goals among supply chain partners.
- **Regulatory and Legal Challenges**: Some countries impose strict environmental regulations that may complicate the implementation of lean production principles in the supply chain, requiring additional changes to processes and procedures. Environmental regulations may change over time, requiring companies to continuously adapt to new requirements and update their environmental strategies.

Companies may also face various other challenges when attempting to implement this approach, especially in light of complex processes, changing market requirements, and environmental sustainability pressures. Key challenges include resistance to change within organizations, a lack of knowledge and skills related to applying lean production principles, and poor data integration across different stages of the supply chain.

Third: Global Models in Implementing Lean Production: Its Impact on Supply Chains and Environmental Sustainability

Lean production has become one of the most widely adopted methods in industrial and service sectors due to its effective role in improving operational efficiency, reducing waste, and enhancing value for customers. With increasing attention to environmental sustainability, many global companies have turned to integrate lean production principles with sustainability strategies to enhance supply chain efficiency and reduce negative environmental impact.

The experiences of leading companies such as Toyota, Boeing, and others reflect the success of implementing lean production in improving the flow of processes, contributing to achieving a balance between economic efficiency and environmental responsibility. Therefore, analyzing these global models provides an opportunity to understand how lean production can be employed as a strategic tool to enhance environmental sustainability and supply chain efficiency, enabling other companies to adopt successful and sustainable practices.xix

1. Toyota'Leans Production System

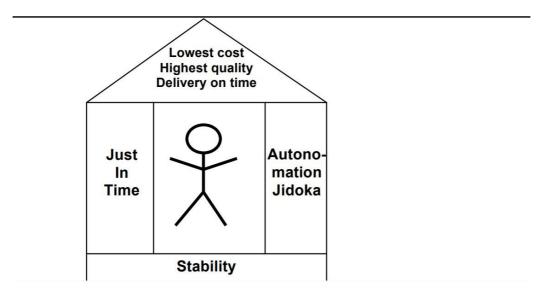
The philosophy of lean manufacturing is being used mostly in the automotive industry. Toyota Motor Company, is the pioneer in lean manufacturing techniques and has been exploiting the techniques since World WarII. They are the leader in successfully practicing the tools and techniques of lean philosophy. The many concepts of lean philosophy is not new, can be found in work of

Deming, Taylor &Skinner but not well understood until Toyota implemented them successfully. In the early 1980's, U.S. auto giant like GM and Ford were in watershed. Their market share was fast diminishing and Japanese were gaining. The Japanese automakers were producing better quality cars with lesser defects and lower cost resulted in enhanced customer. In spite of 1973 oil crisis Toyota continued to increase its earnings and captured more market. Till now Toyota is one of the world's most popular automakers that have continuously outclassed their rivals in terms of quality at lower cost and reliability, faster delivery, and after sales service etc. Japanese production systems have been increasingly researched by global academic world. It's a lean philosophy which made Toyota market leader worldwide surpassing older arch rivals like General Motors & Ford. However there are some doubt regarding the relevance and efficacy of the philosophy but numerous cases exists demonstrating the change in manufacturing practices in quest of becoming leaner

Detailed study of FPS by Toyota motor company and changed the concept from mass production to mass customization known Toyota production system (TPS). Salient points of TPS are cost reduction through elimination of all kinds of waste from the system, Continuous improvements in the quality of products as defined by the customers, quality assurance, production according to the needs and wants of the

customers, and at a pace consensus with the customers demand known as JIT system. The details of TPS was published by Ohno publishers in the book —Toyota Production System in 1978 in Japanese.

Lean principles are derived from the Japanese manufacturing industry. The term "lean manufacturing" was first created by John Krafcik in 1988 .Krafick had been a quality control engineer with Toyota. Historical development of Lean principles is described by Womack, Hones, and Roos in The Machine That Changed the World. This historical book is a classic on management and Lean manufacturing, and it is the third book in a historical sequence after Peter Drucker's Concept Of The Corporation in 1946, which summarized the mass production business model . and Alfred Sloan's My Years With General Motors in 1965, which explained GM's organizational management system in detail . Toyota was half of the size of General Motors (GM) and twothirds of Ford in 1990.**


However, in 2007, Toyota had become larger than Ford and GM and had become the largest and most consistently successful industrial enterprise in the world. Toyota's adoption of Lean allowed it to overtake the American powerhouses, Ford and GM. The two fundamentally different systems, one being mass production and the other being Lean manufacturing (or Lean production), created significant contributions in automobile and other industries. Mass production was used by businesses in almost every industry around the globe for nearly seventy-five years. The newer production system, Lean manufacturing, was pioneered by Toyota after World War II (WWII), and was rapidly implemented nearly everywhere in the world The lessons of the Lean production system have remarkably wide range of applications(Womack, Jones, & Roos, 2007; pp. 229-283).xxiii

In Toyota, environmental sustainability is integrally incorporated into the supply chain through the lean production approach. Reducing waste is one of the most important goals, as the company seeks to minimize losses in both raw materials and energy. For example, the "Jidoka" system, which means "automation with a human touch," is applied, where production is automatically stopped when any defect is detected, which reduces waste and ensures product quality. The "Kaizen" principle, which means "continuous improvement," is also applied to permanently improve efficiency and reduce resource consumption. Toyota's focus is shown through: "xxiii

- **Just-In-Time production system**: Toyota adopted the Just-In-Time system to reduce excess inventory and improve production flow, which contributed to reducing waste and increasing efficiency.
- **Internal recycling**: Toyota developed programs to recycle raw materials and industrial waste within its factories, which reduced waste and increased resource utilization efficiency.
- **Environmental commitment**: Toyota set strict environmental goals, including reducing carbon emissions and using renewable energy, making it a leader in sustainable production.

Also, Toyota promoted Lean manufacturing, and it is often called the Toyota way or the Toyota Production System (TPS), which focuses on improving the smoothness of work by eliminating mura (unevenness) through the system and not on waste reduction alone. Liker and Michael (2008) assert that Toyota's techniques to improve flow involve production leveling, the use of kanban by pull system, and heijyunka box (a visual scheduling tool to achieve a smoother production flow). Toyota's approach requires considerably more commitment and persistence than the basic application of Lean tools, and this might be the reason for its lack of attractiveness.**

Toyota uses a visual display to show how all the elements of a Lean production system fit together. They call it the Toyota Production System (TPS), shown below. It looks like a house, with a roof, two pillars on the left and right, internal structure, and a foundation.

2. Lean Production System at Boeing

Boeing, a leader in the aircraft manufacturing industry, is one of the organizations that has adopted lean production principles to enhance efficiency and reduce waste in its production processes. The concept of lean production revolves around improving operational performance by reducing waste, whether in resources or time, and increasing value-added in processes. This approach not only contributes to achieving the organization's goals in terms of productivity and quality but also plays a vital role in promoting environmental sustainability, which is essential in complex industries like aerospace.

This presentation shares the road taken at The Boeing Company toward a Lean Enterprise. As early as World War II, Boeing employed methods to build the B-17 that would be considered Lean today. The driving need for planes and the restricted resources for manufacturing necessitated streamlined processes with minimum waste. The sense of urgency faded after the war, and so did the use of Lean methods. In the mid 1980s Boeing began its Lean journey with the introduction of Quality Circles or Productivity Circles. This was followed by World Class Competitiveness training, 5S, and Just-in-Time workshops. Learning to use individual Lean tools like accelerated improvement workshops, or AIWs, provided the foundation on which Boeing Commercial Airplanes created an integrated Lean strategy. The whole of The Boeing Company was embracing Lean by 1999. The strategy for becoming a Lean operation is called the 9 Tactics. A visual representation to show the entire company how all the elements of Lean fit together has evolved. Based on the Toyotal Production System, it is called the Boeing Production System.xxx

At Boeing, reducing the consumption of materials and energy is one of the main goals of lean production. By applying tools such as "Just-In-Time" (JIT) and "Kaizen" (continuous improvement), the company works to reduce waste and improve resource efficiency. This enhances the lean production system's optimal use of materials and minimizes waste during manufacturing, leading to a reduction in waste and environmental emissions. This is essential in the aviation sector, where the company's commitment to environmental standards is a key factor in maintaining its reputation and performance.

Boeing was just starting production of the next-generation 737, and the sheet metal shop in Commercial Airplanes could see that they would not be able to handle the demand with their existing capacity. A benchmarking trip to General Electric had shown them a method for managing rapid change called Workout. They hired DeltaPoint, a consultant company, to help develop GE's Workout into Boeing's JIT Workouts, one week blitz workshops. JIT Workouts would evolve into Accelerated Improvement Workshops (AIWs). In the early 90s, Craig Habakangas and Don Larson in the Boeing Fabrication Division conducted the first AIW. There were subsequent AIWs conducted by interested groups around Fab Division, leading to localized improvements. Boeing began learning the tools. John Black participated in an AIW and wanted to take them company-wide. He hired Craig Habakangas and Dick Bowers, who worked with DeltaPoint to change the JIT Workouts into AIWs. At Arnprior, a Boeing Fabrication facility in Canada, Bruce Gissing, Senior Vice President of

Continuous Quality Improvement, started implementing the Just In Time (JIT) flow management system. Arnprior has since gone on to become a Lean leader in The Boeing Company, winning the Fred Mitchell Award for Lean Manufacturing Excellence three times in a row, from 2001 to 2003. Another Commercial Airplanes Fabrication Division site, Wichita began to use JIT in 1995xxvi From 1995 to 1998 Boeing focused on conducting AIWs. In the first two months of 1997, Commercial Airplanes conducted over 100 AIWs. Fred Mitchell, vice president of Manufacturing, consolidated the various lean efforts into one office. In 1996 Boeing formed a central Lean Manufacturing office under John Black to focus on strategy across Boeing Commercial Airplanes. Shingijutsu consultants spent many weeks at Boeing and hosted many senior managers at Japan Kaizen seminars.

Enter Mary Dowell, another avid supporter of Lean. She ran 737 Final Assembly, where, in 2000, they developed the roadmap to achieving continuous flow that Boeing calls the 9 Tactics. Tactic 1 Value Stream Mapping. Tactic 2 Balance the Line .Tactic 3 Standard Work .Tactic 4 Visuals in Place. Tactic 5 Point of Use Staging. Tactic 6 Feeder Lines .Tactic 7 Process Breakthrough Redesign .Tactic 8 Pulse Line. Tactic 9 Moving Line.

In 2000, it had a fulcrum and the nine internal blocks as a guide to developing toward a "Pull System" of production.

The Lean journey at Boeing has been an increasing curve, with a continuous increase in understanding of the tools and philosophies. The slope has gotten steeper as the journey continues. Boeing built on Continuous Quality Improvement principles, started Lean with "popcorning" Accelerated Improvement Workshops (AIWs) throughout the company in 1990, faltered in Commercial Airplanes during the bad economic times of 1992, then regained momentum in the mid-1990s. The perception that World Class Competitiveness, 5S, AIWs, Six Sigma, and so on, are "flavors of the month", is giving way to the realization that they are all part of the Boeing Production System. Boeing has developed a locomotive called the Lean Enterprise to which they add railroad cars as they learn more*xxvii

Boeing continues to strengthen its commitment to environmental sustainability by adopting lean production strategies, which help it make tangible progress toward its environmental goals. This approach reflects the company's commitment to achieving a balance between operational efficiency and environmental responsibility, and contributes to strengthening its position as a global leader in the industry. Through these efforts, Boeing aims to be a role model in implementing sustainable and environmentally responsible production practices in the aviation sector.

Conclusion

The importance of integrating lean production principles into the supply chain lies in the ability to achieve integration between effective environmental performance and process management. When organizations adopt lean production techniques, they succeed in achieving significant savings in resource consumption and reducing harmful emissions, which contributes to enhancing

environmental sustainability. Moreover, this approach helps achieve improvements in product and service quality, which increases customer satisfaction leads to positive financial manufacturing is one of the most important production systems that aims to reduce waste in all its forms in the production process, thereby contributing to cost reduction by eliminating all non-value- added activities, and focusing on the critical activities of the production process. The lean manufacturing system focuses on a set of essential dimensions that organizations need to apply to reach a point where they can eliminate all forms of waste. The application of these dimensions within organizations helps reduce waste in terms of materials used in the production process, waiting times, space, transportation, and storage. The study concluded that: The application of lean production principles can play an effective role in reducing the environmental impact of industrial activities by improving resource efficiency and reducing waste.

- Lean Everywhere: The future of Lean across all industries is limitless. Womack and Jones assert that the principles, methods, tools, and techniques apply in any situation.
- Lean production tools, such as "Kanban" and "5S," allow organizations to achieve more rational resource consumption, which leads to both cost reduction and a decrease in negative environmental impacts.
- There is an integrative relationship between lean production and environmental sustainability, where reducing waste and increasing the efficiency of production processes leads to a reduction in waste and harmful emissions. The study also confirmed that employing renewable energy and adopting sustainable practices within the supply chain can enhance this integration between environmental productivity and economic efficiency.
- Several challenges hinder the application of lean production in the context of environmental sustainability, the most prominent of which is the need for cultural change within organizations and employee training to ensure the effectiveness of implementing these principles, in addition to the initial costs required for the shift to lean production.
- The principles and tools of lean production provide a practical framework that can be applied in the supply chain to reduce waste and improve efficiency, thus supporting the integrative relationship between lean production and environmental sustainability by optimizing resource use and reducing negative environmental impacts.
- Although organizational and financial challenges may hinder this application, the long-term benefits of lean production make it a viable option for companies. The study also showed that best practices to enhance sustainability include using lean production tools, adopting renewable energy sources, and embracing continuous improvement in operations.
- Lean principles aim to make the workflow simple enough to understand, execute, and manage. To achieve these three goals simultaneously, Toyota believes in a mentoring process of senior and junior (senpai and kohai) employees to foster Lean methods and culture to disseminate throughout the organization.
- The Lean movement began in the production arena on the operational floor in Japanese automotive manufacturing and assembly plants. This is where the Lean philosophy, Lean principles, and techniques were first developed and later refined. Lean production techniques are much different from those used

- for twentieth-century style industrial mass manufacturing. Lean in the production area has always been about doing more with less improving quality and effectiveness while consuming less time, fewer resources, less energy, inventory, labor, and capital.
- Boeing's Lean journey has steadily advanced as its understanding of the associated tools and philosophies deepened. Building on Continuous Quality Improvement principles, the company initiated Lean by deploying "popcorning" Accelerated Improvement Workshops (AIWs) in 1990, experienced setbacks in Commercial Airplanes during the 1992 economic downturn, and then regained momentum in the mid-1990s. Over time, what was once seen as temporary trends— such as World Class Competitiveness, 5S, AIWs, and Six Sigma—has become an integral part of the Boeing Production System, continuously enhanced as the Lean Enterprise evolves.

References

- 1. Johnson, Mark. (2019), Lean Manufacturing: History and Applications, Part One, Second Edition, Arab Publishing House, Egypt, p. 45.
- 2. Shah, R., & Ward, P. T. (2003). Lean manufacturing: context, practice bundles, and performance. Journal of Operations Management, 21(2), 129-149.
- 3. Pettersen, Jostein, (2009), Defining Lean Production: Some Conceptual and Practical Issues, The TQM Journal, Vol. 21, No. 2, pp. 127-142
- 4. Fatima Maan, Sara Bouqsri, (2021), The Impact of Lean Production on Reducing the Production Costs of Industrial Enterprises, Journal of Humanities and Social Sciences, Volume 07, Issue 03, December, p. 05.
- 5. Al-Shammari, Khawla Rady Athab, (2011), The Interactive Relationship Between Accelerated Manufacturing and Lean Manufacturing and Its Impact on Achieving Sustainable Competitive Advantage, Unpublished Master's Thesis Presented to the Faculty of Administration and Economics, p. 66.
- 6. ViAli Hussein Abdul Ali, (2018), Lean Manufacturing and Its Relationship with Achieving Competitive Advantage, Al-Qadisiyah University, Department of Business Administration, College of Administration and Economics, p. 04.
- 7. Al-Hassnawi, Jamil, (2013), Dimensions of Lean Manufacturing and Its Impact on Operational Performance Dimensions, Unpublished Master's Thesis Presented to the Faculty of Administration and Economics, p.26.
- 8. Ahmed, Hassan. (2021), Lean Manufacturing Tools and Their Effectiveness in Improving Industrial Performance, Part One, Fourth Edition, Academic Publishing Center, Jordan, p. 58.
- 9. Fadila Salman Dawood, Aisha Hammoudi Hashim, Lean Manufacturing Strategy According to Green ^{ix} Productivity Standards: An Exploratory Study at the Dora Refinery, College of Administration and Economics, University of Sharjah Journal, Baghdad University, Baghdad Iraq, Volume 14, Issue 02, p. 15.
- 10. Taleghani, Mohammad (2010), Key Factors for Implementing the Lean Manufacturing System, Journal of American Science, Vol. 6, No. 7, p. 287-291.

- 11. Smith, John. (2020), Principles of Lean Manufacturing and Its Applications in Modern Industry, Part Two, Third Edition, Scientific Books Publishing House, Saudi Arabia, p. 102.
- 12. Abdullah, Fawaz (2003), "Lean Manufacturing Tools and Techniques in the Process Industry with a Focus on Steel", Ph.D. Dissertation, School of Engineering, University of Pittsburgh, p. 339.
- 13. Al-Tayyib Al-Wafi (2012), Environmental Leadership: Nokia Company as a Model, Researcher Journal, p.148
- 14. https://www.donboscogozo.org/images/pdfs/energy/A-Perspective-on-Environmental- Sustainability_xiv
- 15. Al-Otaibi, Mohammed. (2022), Lean Manufacturing and Resource Management in the Context of Sustainability, Part One, Third Edition, Arab Thought House, UAE, p. 67.
- 16. Khaled, Imad. (2021), Environmental Sustainability in Lean Manufacturing: Reducing Waste and Improving the Environment, Part Two, Second Edition, Knowledge House, Kuwait, p. 89.
- 17. Dües, C. M., Tan, K. H., & Lim, M. (2013). Green as the New Lean: How to Use Lean Principles for Environmental Sustainability. Journal of Cleaner Production, 40, 93–100.
- ¹⁸ Abdullah, Samer. (2020), Modern Challenges in Applying Lean Manufacturing within Supply Chains, Part Three, First Edition, Excellence Publishing House, Jordan, p. 102.
- ^{19.} Al-Buqami, Nasser. (2019), Studies in Lean Manufacturing and Sustainability: Global Experiences, Part Two, Fourth Edition, Industrial Research Center, UAE, p. 140.
- 20. Rupesh Kumar Tiwari, Jeetendra Kumar Tiwari. Green lean manufacturing: Way to sustainable productivity improvement.. Research Scholar, Chhattisgarh Swami Vivekanand Technical University, Bhilai (Chhattisgarh) -490009, India, International Journal of Engineering Research and General Science Volume 4, Issue 6,November-December, 2016 ISSN 2091-2730.p 245.
- 21. Kat Yamamoto. Mallory Milstead. Robert Lioyd. A **Review of the Development of Lean Manufacturing and Related Lean Practices:** The Case of Toyota Production System and Managerial Thinking.. International Management Review Vol. 15 No. 2 2019.p 22.
- 22. Womack, J. P., Jones, D. T., & Roos, D. (2007). The machine that changed the world: The story of lean production-- Toyota's secret weapon in the global car wars that is now revolutionizing world Industry (Reprint edition). New York, NY: Free Press.p229-283.
- ²³· Liker, J., & Franz, J. K. (2011). The Toyota way to continuous improvement: Linking strategy and operational excellence to achieve superior performance (1st ed.). New York, NY: McGraw-Hill Education
- 24. Liker & Michael, 2008, Liker, J. K., & Michael H. (2008). Toyota culture: The heart and soul of the Toyota way. New York, NY: McGraw-Hill. p. 5
- 25. Liker, J. K. (2004). The Toyota Way: 14 Management Principles from the World's Greatest Manufacturer. McGraw

- 26. http://www.boeing.com/news/frontiers/archive(2004december/i_ca1.html A Historical
- 27. Perspective, Moving Final Assembly Line Production and Implementing Lean Practices
- 28. Boeing Commercial Airplanes Group. (2001). Lean Manufacturing at Boeing: Achieving World- Class Competitiveness