#### How to Cite:

Harkati, F., Touil, B. E., Boukhatem, T., Noureddine, H., & Mohamed, T. (2024). The impact of oil price volatility on economic growth in selected oil-exporting countries during the period (2000-2022) – An econometric study using dynamic panel data models. *International Journal of Economic Perspectives*, 18(10), 1718–1732. Retrieved from <a href="https://ijeponline.org/index.php/journal/article/view/672">https://ijeponline.org/index.php/journal/article/view/672</a>

# The impact of oil price volatility on economic growth in selected oil-exporting countries during the period (2000-2022) – An econometric study using dynamic panel data models

#### Fateh Harkati

Batna 1 University, Algeria

Email: fateh.harkati@univ-batna.dz

#### **Baha Eddine Touil**

Batna 1 University, Algeria

Email: bahadine.touil@univ-batna.dz

#### Telha Boukhatem

Dielfa University, Algeria

Email: telha.boukhatem@univ-djelfa.dz

#### Houari Noureddine

Aflou University Center, Algeria Email: n.houari@cu-aflou.edu.dz

#### Trifa Mohamed

University of Mohammed Seddik Benyahia Jijel, Algeria

Email: mohamed.trifa@univ-jijel.dz

**Abstract**—This paper examines the impact of oil price fluctuations on economic growth in several oil-exporting countries, namely: the United States, Russia, Canada, Saudi Arabia, the United Arab Emirates, Algeria, and Iraq. These countries were selected as they are among the largest oil exporters within the OPEC organization. The period from 2000 to 2022 was chosen as the study sample. We used regression analysis for panel data based on the cointegration methodology and the error correction model for panel data. The study's results indicated a long-term equilibrium relationship between economic growth, oil prices, and other control variables. When estimating the error correction model (VECM) using the FMOLS method, the results showed that an increase in oil prices (OP) has a positive effect on

© 2024 by The Author(s). © SY ISSN: 1307-1637 International journal of economic perspectives is licensed under a Creative Commons Attribution 4.0 International License.

Corresponding author: XXXX, Email: xxxx@gmail.com

Submitted: 02 July 2024, Revised: 29 September 2024, Accepted: 10 October 2024

economic growth, measured by per capita GDP in the long term for all countries in the sample. Additionally, other control variables (TFC, WF, TOP) had economically acceptable signs and also influence per capita GDP in the long term.

**Keywords**---Oil prices, Economic growth, Oil-exporting countries, Panel data, FMOLS method.

#### Introduction

Oil is considered one of the most important economic resources in the world, serving as a primary source of revenue for many exporting countries. Fluctuations in oil prices play a vital role in shaping economic policies and defining the contours of economic growth in these nations. Rapid and continuous changes in global oil prices have significant impacts on public budgets, investment rates, and balance of payments. As a result, studying the impact of oil price fluctuations on economic growth is a central issue for understanding the dynamics of macroeconomics in these countries.

#### Research Problem:

This research paper seeks to answer the following main question:

- What are the implications of oil prices on economic growth in some exporting countries?

# **Research Hypotheses:**

- There is a long-term equilibrium relationship between oil prices and economic growth.
- There is a positive effect of oil prices on economic growth.

#### Objective of the Study:

This study aims to analyze and assess the impact of oil price fluctuations on economic growth in some exporting countries using dynamic panel data models. These models provide a suitable framework for studying both long-term and short-term dynamic effects and consider temporal changes and the interrelationships between various economic variables in the countries included in the study. Additionally, the models allow for distinguishing between the individual effects of each country and the general effects shared among the countries.

The study will focus on Arab countries that heavily rely on oil revenues, such as Saudi Arabia, the United Arab Emirates, Kuwait, Iraq, and others. By employing dynamic modeling techniques, the data from these countries will be analyzed over an extended period, aiming to reach statistically supported conclusions regarding how economic growth is affected by oil price fluctuations, while considering other economic and political factors that may influence this relationship.

#### Importance of the Study:

The importance of this study stems from the urgent need to gain a deeper understanding of how these countries cope with oil price fluctuations and adapt to the economic challenges imposed by these variations. Furthermore, the findings of this research could provide recommendations for policymakers regarding appropriate economic policies to achieve stability and economic growth amid oil price fluctuations.

# Methodology of the Study:

Given the nature of the topic and to achieve the objectives of this research while covering its various aspects, we will rely on a descriptive analytical approach to study the performance of the study variables and their development through previous studies and theoretical frameworks. The study will also adopt an econometric approach by utilizing modern econometric and statistical methods to understand the nature of the relationship between oil prices and economic growth.

# Division of the Study:

The research is divided into three sections. The first section discusses previous empirical studies, while the second section addresses the theoretical relationship between oil prices and economic growth. The third section presents an econometric study of the impact of oil price fluctuations on economic growth in some exporting countries.

#### First Section: Previous Empirical Studies:

- Study by Adnani Khawla, Aqsam Hasna, and Muqaddim Abdul Jalil (2019): "The Impact of Oil Price Fluctuations on Algeria and Qatar (2019)" examined the effects of oil price fluctuations on growth rates in Algeria and Qatar. The study showed that the negative shocks of oil prices had a greater impact on growth than positive shocks, indicating that price fluctuations have an asymmetric effect on the economy. The study concluded that Algeria, as a rentier state, is significantly affected by changes in oil prices, whether positively or negatively. In contrast, Qatar features a diversified economy that, while also affected by oil price fluctuations, achieves substantial economic growth due to its policy of economic diversification and revitalization of non-oil sectors.
- Study by the Arab Monetary Fund on the Gulf Cooperation Council countries (2000-2019): This study aimed to measure the response of economic growth to oil price fluctuations in the Gulf Cooperation Council countries. The results indicated that economic activity was more sensitive to declines in oil prices compared to increases, reinforcing the trend towards economic diversification to reduce reliance on oil.
- Study by Belkacem Manal (2021): "The Impact of Oil Price Fluctuations on the Growth of Oil-Exporting Economies," focused on measuring the impact of oil price fluctuations on economic growth in oil-exporting countries during the period 2000-2021 using panel data. The results showed a negative relationship between oil price fluctuations and economic growth in the short term, while the

relationship remained positive in the long term, as these countries' economies heavily depend on oil revenues.

- Study by Abdul Salam Shaikhawi (2020): "The Impact of Oil Price Fluctuations on Economic Growth in Algeria An Econometric Study During the Period (1990-2015)," this study examined the impact of oil price fluctuations on economic growth in Algeria for the period 1990-2020 using an Autoregressive Distributed Lag (ARDL) model. The study found a significant short-term impact of oil price fluctuations on economic growth, with a long-term equilibrium relationship between the two variables.
- Study by Boukhtir Jabar and Atia Abdul Salam (2018): "Modeling the Relationship between Oil Price Fluctuations and Economic Growth Using Panel Data A Case Study of Arab OPEC Member Countries during the Period (2000-2016)," aimed to model the relationship between oil price fluctuations and economic growth in Arab OPEC member countries during the period 2000-2016. The study employed panel data methodology and showed a long-term relationship between oil prices and economic growth, with oil prices positively influencing economic growth in these countries. A random effects model was used as the most suitable model to estimate the relationship.

# Second Section: Theoretical Relationship Between Oil Prices and Economic Growth

Oil is considered one of the most important natural resources and is essential to the global economy. There is a theoretical relationship between oil prices and economic growth. Some theorists, such as Thomas Malthus, economist Rebinsky, and American Theodore Roosevelt, argue that oil acts as an obstacle to growth. They claim that when oil prices rise, economies—especially those that heavily rely on oil as a primary resource—may suffer. For example, rising oil prices increase production and transportation costs for companies, leading to higher prices for goods and services. This can result in inflation and a slowdown in economic growth.

On the other hand, some argue that oil is a driver of growth, including John Stuart Mill, Harold Hotelling, and Milton Friedman. Proponents of these theories believe that natural resources do not always hinder growth for resource-rich countries. There are countries capable of effectively managing and utilizing their revenues from extracting fossil fuels, despite fluctuations in the prices of these resources.

In general, it can be said that there is a mutual influence between oil prices and economic growth, where this relationship depends on various factors such as supply and demand for oil, and the economy's response to these changes.

# Third Section: Measuring the Impact of Oil Price Fluctuations on Economic Growth in Some Oil-Exporting Countries during the Period (2000-2022):

In our study of the impact of oil prices on economic growth in some oil-exporting countries, we selected seven countries as a sample: the United States, Russia, Canada, Saudi Arabia, the United Arab Emirates, Algeria, and Iraq. Our choice of these countries was based primarily on two considerations: first, they are among

the largest oil-exporting countries recognized by OPEC; second, data on the study variables are available from the World Bank database (World Bank data, 2024). The study period was chosen from the year 2000 to 2022.

The method of handling panel data initially relies on testing the possibility of an effect among the sample countries, followed by discussing and analyzing the results of estimating the model that fits the sample data. After that, we aim to determine the integration levels of the variables and test the long-term relationship if it exists (Baltagi, 2015, pp. 16-21). Based on the above, we will attempt to follow the following methodology:

# 1. Analytical Form of the Study Model:

The study model is defined based on data in the form of panel data, which pertains simultaneously to a homogeneous group of units over a specific period. In this case, the model takes the following form:

$$Y_{it} = \beta_0 + \beta_1 X_{1it} + \beta_2 X_{2it} + ... + \varepsilon_{it}$$
  
 $i=1.2....N$   $t=1.2....T$ 

According to the model structure, the analytical form of our study model is defined as follows:

PGDP<sub>it</sub> = 
$$\beta_0 + \beta_1 \text{OF}_{it} + \beta_2 \text{TFC}_{it} + \beta_3 WF_{it} + \beta_4 \text{TOP}_{it} + \varepsilon_{it}$$
  
 $i=1.2...N$   $t=1.2...T$ 

*i* :Represents the country (N is the number of countries, where in our study there are 7 countries)

*t*: Represents time (T is the number of years, where the study spans 23 years from 2000 to 2022)

 $\mathcal{E}_{it}$ : The random term.

 $PGDP_{ii}$ : Represents the per capita GDP of the country i in the period t, it represents the dependent variable in the model..

 $OF_{ii}$ :Represents the oil prices for the country i in the period t.

 $TFC_{ii}$ : Represents the gross fixed capital formation for the country i in the period t.

 $WF_{ii}$ :Represents the labor force for country i in the period t.

 $TOP_{ii}$ : Represents the trade openness of the country i in the period t.

# 2. Identifying the Suitable Model for the Sample Data:

# 1.2. Estimating the Study Model:

Based on the longitudinal nature of the study data, we distinguish among three models: (Pooled), (Fixed), and (Random). The first two models are estimated using Ordinary Least Squares (OLS), while the last model is estimated using Generalized Least Squares (GLS). The results are summarized and recorded in the following tables:

Table 1: Results of Estimating the Pooled

| r                                        |                                                                                             |             |               |             |          |  |  |
|------------------------------------------|---------------------------------------------------------------------------------------------|-------------|---------------|-------------|----------|--|--|
|                                          | Dependent Variable: P<br>Method: Panel Least S<br>Date: 03/31/24 Time:<br>Sample: 2000 2022 | quares      |               |             |          |  |  |
|                                          | Periods included: 23                                                                        |             |               |             |          |  |  |
|                                          | Cross-sections include                                                                      |             |               |             |          |  |  |
| Total panel (balanced) observations: 161 |                                                                                             |             |               |             |          |  |  |
|                                          | Variable                                                                                    | Coefficient | Std. Error    | t-Statistic | Prob.    |  |  |
|                                          | OP                                                                                          | 107.5378    | 37.19754      | 2.890993    | 0.0044   |  |  |
|                                          | TFC                                                                                         | 0.018173    | 0.001928      | 9.424436    | 0.0000   |  |  |
|                                          | WF                                                                                          | -111.6790   | 48.32262      | -2.311112   | 0.0221   |  |  |
|                                          | TOP                                                                                         | 20914.32    |               |             | 0.0000   |  |  |
|                                          | С                                                                                           | -4335.460   | 4100.647      | -1.057262   | 0.2920   |  |  |
|                                          | R-squared                                                                                   | 0.609475    | Mean depen    | dent var    | 24372.13 |  |  |
| ı                                        | Adjusted R-squared                                                                          | 0.599462    | S.D. depend   |             | 19933.13 |  |  |
|                                          | S.É. of regression                                                                          | 12615.30    | Akaike info o | riterion    | 21.75377 |  |  |
|                                          | Sum squared resid                                                                           | 2.48E+10    | Schwarz crite | erion       | 21.84947 |  |  |
| I                                        | Log likelihood                                                                              | -1746.179   | Hannan-Quir   | nn criter.  | 21.79263 |  |  |
|                                          | F-statistic                                                                                 | 60.86560    | Durbin-Wats   | on stat     | 0.046769 |  |  |
| ı                                        | Prob(F-statistic)                                                                           | 0.000000    |               |             |          |  |  |

Table 2: Results of Estimating the Fixed Model

| Dependent Variable: P<br>Method: Panel Least S<br>Date: 03/31/24 Time:<br>Sample: 2000 2022<br>Periods included: 23<br>Cross-sections include<br>Total panel (balanced) | quares<br>06:26<br>d: 7                                                           | 161                     |                                                           |                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------|----------------------------------------------------------------------|
| Variable                                                                                                                                                                | Coefficient                                                                       | Std. Error              | t-Statistic                                               | Prob.                                                                |
| OP<br>TFC<br>WF<br>TOP<br>C                                                                                                                                             | 96.03542<br>0.006772<br>787.0598<br>1839.983<br>-19474.15<br>Effects Sports       | 5916.093<br>ecification | 9.069499<br>4.999399<br>4.866065<br>1.192238<br>-3.291724 | 0.0000<br>0.0000<br>0.0000<br>0.2351<br>0.0012                       |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic)                                        | 0.974419<br>0.972714<br>3292.645<br>1.63E+09<br>-1526.763<br>571.3831<br>0.000000 |                         | ent var<br>riterion<br>erion<br>nn criter.                | 24372.13<br>19933.13<br>19.10265<br>19.31318<br>19.18813<br>0.386536 |

Table 3: Results of Estimating the Random Model

| Dependent Variable: PGDP Method: Panel EGLS (Cross-section random effects) Date: 03/31/24 Time: 06:27 Sample: 2000 2022 Periods included: 23 Cross-sections included: 7 Total panel (balanced) observations: 161 Swamy and Arora estimator of component variances |                       |                           |                      |                      |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------|----------------------|----------------------|--|--|
| Variable                                                                                                                                                                                                                                                          | Coefficient           | Std. Error                | t-Statistic          | Prob.                |  |  |
| OP                                                                                                                                                                                                                                                                | 106.4172              | 10.22034                  | 10.41229             | 0.0000               |  |  |
| TFC                                                                                                                                                                                                                                                               | 0.009474              | 0.001154                  | 8.212878             | 0.0000               |  |  |
| WF                                                                                                                                                                                                                                                                | 363.7044              | 116.5724                  | 3.119987             | 0.0022               |  |  |
| TOP                                                                                                                                                                                                                                                               | 1892.215              | 1541.407                  | 1.227590             | 0.2215               |  |  |
| С                                                                                                                                                                                                                                                                 | -4489.283             | 8726.054                  | -0.514469            | 0.6077               |  |  |
|                                                                                                                                                                                                                                                                   | Effects Spe           | ecification               | S.D.                 | Rho                  |  |  |
| Cross-section random<br>Idiosyncratic random                                                                                                                                                                                                                      |                       |                           | 19981.08<br>3292.645 | 0.9736<br>0.0264     |  |  |
|                                                                                                                                                                                                                                                                   | Weighted              | Statistics                |                      |                      |  |  |
| R-squared                                                                                                                                                                                                                                                         | 0.740787              | Mean depen                |                      | 836.9496             |  |  |
| Adjusted R-squared                                                                                                                                                                                                                                                | 0.734141              | S.D. depend               |                      | 6617.892             |  |  |
| S.E. of regression                                                                                                                                                                                                                                                | 3412.289              | Sum squared               |                      | 1.82E+09             |  |  |
| F-statistic                                                                                                                                                                                                                                                       | 111.4554              | Durbin-Wats               | on stat              | 0.348899             |  |  |
| Prob(F-statistic)                                                                                                                                                                                                                                                 | 0.000000              |                           |                      |                      |  |  |
|                                                                                                                                                                                                                                                                   | Unweighted            | Statistics                |                      |                      |  |  |
| R-squared<br>Sum squared resid                                                                                                                                                                                                                                    | -0.558949<br>9.91E+10 | Mean depen<br>Durbin-Wats |                      | 24372.13<br>0.006395 |  |  |

Source: Prepared by the researchers based on the outputs of Eviews 12.

2. Testing for the Possibility of an Individual Effect in the Model:

We conduct a test for the possibility of an individual effect within the sample data based on a Fisher-type test, where the null hypothesis fits a homogeneous model, i.e., there is no individual effect in the studied sample. The statistic for this test is represented by (William, Econométrie, 2005, p. 277):

$$F(N-1, NT-N-K) = \frac{(R^2_{MNC} - R^2_{MC})/(N-1)}{(1-R^2_{MNC})/(NT-N-K)}$$

*N* : Represents the number of individuals (in our case, 7 countries).

T: The length of the proposed time series for the study (in our case, 23 years).

*K*: The number of external variables in the model (in our case, 4).

 $R_{MC}^2$ : Represents the adjusted coefficient of determination of the restricted model, which is under the null hypothesis. In this case, it is a model without effect, or an effect-free model (**Pooled**  $R_{MC}^2 = 0.60$ .).

 $R_{\mathit{MNC}}^2$  : Represents the adjusted coefficient of determination for the unrestricted model, which corresponds to the alternative hypothesis. In this case, it matches Model (Fixed) ( $R_{\mathit{MNC}}^2=0.97$ ).

$$F(7-1, 161-7-4) = \frac{(0.97-0.60)/(7-1)}{(1-0.97)/(161-7-1)} \cong 3.085$$

When conducting this test, we obtain a calculated Fisher statistic value of  $F_C = 3.085$ , while the tabulated statistic is  $F_{(7.150)} = 2.21$ . Therefore, we reject the null hypothesis ( H\_0) at a significance level of 5% and conclude that there is an individual effect within the sample data.

#### 3. Testing for the Type of Effect:

After establishing the presence of an individual effect in the model, we will use the Hausman test to determine the type of effect. The following table illustrates the result of this test:

Table 4: Result of the Hausman Test

| Correlated Random Effects - Hausman Test<br>Equation: Untitled<br>Test cross-section random effects |                   |              |        |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|-------------------|--------------|--------|--|--|--|--|
| Test Summary                                                                                        | Chi-Sq. Statistic | Chi-Sq. d.f. | Prob.  |  |  |  |  |
| Cross-section random                                                                                | 15.543049         | 4            | 0.0037 |  |  |  |  |

Source: Prepared by the researchers based on the outputs of Eviews 12.

Table 4 shows that the calculated statistic for the Hausman test  $\chi_C^2 = 15.54$  is large compared to the tabulated statistic, and the p-value of 0.0037 is less than

the commonly accepted significance levels of 1%, 5%, and 10%. Therefore, we reject the null hypothesis and acknowledge that there is a correlation between the explanatory variables and the individual effect. Consequently, the appropriate model for the sample data is of **the fixed effects type**, which provides us with consistent estimates in this case. Thus, the countries in the sample agree on the coefficients of the explanatory variables but differ in the values of the constant term, with this difference being determined based on the values of the explanatory variables for each country.

#### 4. Evaluation of the Fixed Effects Model:

Based on the results of the previous tests, the model that fits the data of our study sample is the fixed effects model. Based on the estimation results shown in Table 2, the model can be written as follows:

$$PGDP_{it} = -1947.15 + 96.03542OF_{it} + 0.006772TFC_{it} +$$
  
 $\Rightarrow 787.0598WF_{it} + 1839.98TOP_{it} + e_{it}$ 

We observe from the results of the statistical significance tests (Student's t-tests) for the parameter estimates of the model that they are statistically acceptable at the 1% significance level. Additionally, the Fisher test for the overall significance of the model indicates acceptance of the explanatory power of this model at the 1% significance level. Furthermore, the value of the adjusted coefficient of determination is  $R^2=0.97$ , which is an excellent value.

However, we note that the Durbin-Watson (DW) statistic indicates the presence of first-degree autocorrelation in the residuals, which renders the parameter estimates inconsistent (non-convergent). Nevertheless, it is preferable not to use the Durbin-Watson test to detect residual autocorrelation, as it is not effective in the case of panel data. We can rely on the statistics from the residual autocorrelation tests between the countries, as shown in Table 5:

Table 5: Results of Residual Autocorrelation Tests

Residual Cross-Section Dependence Test Null hypothesis: No cross-section dependence (correlation) in residuals Equation: Untitled Periods included: 23 Cross-sections included: 7 Total panel observations: 161 Note: non-zero cross-section means detected in data Cross-section means were removed during computation of correlations Statistic d.f. Prob. Breusch-Pagan LM 129.8744 0.0000 21 0.0000 Pesaran scaled LM 15.71956 Pesaran CD 3.018010 0.0025

Source: Prepared by the researchers based on the outputs of Eviews 12.

We observe from Table 5 that all the statistics of these tests are significant at the 1% level, leading to the rejection of the null hypothesis: \( H\_0: \text{no autocorrelation} \), and acceptance of the alternative hypothesis: \( H\_1: \text{no autocorrelation} \)

\text{there is autocorrelation} \), which states that the model suffers from a problem of residual autocorrelation. In this case, the parameter estimates are unbiased, meaning they are consistent; however, they lose the property of being the least variable, i.e., they are not the best estimates. This indicates that the model is not acceptable in a measurement sense, and better estimations must be sought (Baltagi, Kao, & Peng, 2016, pp. 03-06). As we found previously  $R^2 > DW$ , this is an indication of a spurious regression in the model, primarily due to the instability of the time series being studied.

# 3. Estimating the Long-Term Relationship Between Oil Prices and Economic Growth:

To estimate the long-term relationship between the study variables, we first need to test the stationarity of the time series for the model variables using the following statistical tests: (Levin, Lin, and Chu test), (Breitung test), (Im, Pesaran, and Shin test), and (Maddala and Wu test).

### 1.3. Study of the Stationarity of the Time Series for the Study Variables:

- Table 6: Results of the Stationarity Test for PGDP Table 7: Results of the Stationarity Test for D(PGDP)

| Panel unit root test: Summary<br>Series: PGDP                                      |                                      |                    |             |     |  |
|------------------------------------------------------------------------------------|--------------------------------------|--------------------|-------------|-----|--|
| Date: 03/25/24 Time: 04:02                                                         |                                      |                    |             |     |  |
| Sample: 2000 2022                                                                  |                                      |                    |             |     |  |
| Exogenous variables: Individua                                                     |                                      | lividual line      | ear trends  |     |  |
| Automatic selection of maximum                                                     |                                      | 0.01-4             |             |     |  |
| Automatic lag length selection based on SIC: 0 to 1                                |                                      |                    |             |     |  |
| Newey-West automatic bandwidth selection and Bartlett kernel                       |                                      |                    |             |     |  |
|                                                                                    |                                      |                    | Cross-      |     |  |
| Method                                                                             | Statistic                            | Prob.**            | sections    | Obs |  |
| Null: Unit root (assumes comm                                                      | on unit root                         | process)           |             |     |  |
| Levin, Lin & Chu t*                                                                | 0.66966                              | 0.7485             | 7           | 152 |  |
|                                                                                    |                                      |                    |             |     |  |
|                                                                                    | 0.99897                              | 0.8411             | 7           | 145 |  |
| Breitung t-stat                                                                    |                                      |                    | 7           | 145 |  |
| Breitung t-stat<br>Null: Unit root (assumes individ                                | lual unit root                       | process)           | 7           |     |  |
| Breitung t-stat<br>Null: Unit root (assumes individ<br>Im, Pesaran and Shin W-stat | lual unit root<br>1.04886            | process)<br>0.8529 | 7           | 152 |  |
| Breitung t-stat<br>Null: Unit root (assumes individ<br>Im, Pesaran and Shin W-stat | lual unit root<br>1.04886<br>10.4707 | process)<br>0.8529 | 7<br>7<br>7 |     |  |

| Sample: 2000 2022                                               |                |               |            |     |  |
|-----------------------------------------------------------------|----------------|---------------|------------|-----|--|
| Exogenous variables: Individua<br>Automatic selection of maximu |                | dividual line | ear trends |     |  |
| Automatic lag length selection based on SIC: 0 to 1             |                |               |            |     |  |
| Newey-West automatic bandwidth selection and Bartlett kernel    |                |               |            |     |  |
|                                                                 |                |               | Cross-     |     |  |
| Method                                                          | Statistic      | Prob.**       |            | Obs |  |
| Null: Unit root (assumes comm                                   |                |               | 36000113   | 003 |  |
|                                                                 | -6.67424       |               | 7          | 145 |  |
| Breitung t-stat                                                 | -3.02500       |               | 7          | 138 |  |
| Null: Unit root (assumes individ                                | dual unit root | process)      |            |     |  |
| Im, Pesaran and Shin W-stat                                     |                |               | 7          | 145 |  |
| ADF - Fisher Chi-square                                         | 41.8728        | 0.0001        | 7          | 145 |  |
| PP - Fisher Chi-square                                          | 36.7590        |               | 7          | 147 |  |

Source: Prepared by the researchers based on the outputs of Eviews 12.

Table 9: Results of the stationarity test for D(OP)

| Series: OP<br>Date: 03/25/24 Time: 05:24 |                 |               |             |            |
|------------------------------------------|-----------------|---------------|-------------|------------|
| Sample: 2000 2022                        |                 |               |             |            |
| Exogenous variables: Individua           | al effects, inc | dividual line | ear trends  |            |
| Automatic selection of maximu            | m lags          |               |             |            |
| Automatic lag length selection           |                 |               |             |            |
| Newey-West automatic bandw               |                 | n and Bart    | lett kernel |            |
| Balanced observations for each           | h test          |               |             |            |
|                                          |                 |               | Cross-      |            |
| Method                                   | Statistic       | Prob.**       | sections    | Obs        |
| Null: Unit root (assumes comm            | on unit root    | process)      |             |            |
| Levin, Lin & Chu t*                      | 0.05504         | 0.5219        | 7           | 154        |
| Breitung t-stat                          | -1.67386        | 0.0471        | 7           | 147        |
| N                                        |                 |               |             |            |
|                                          |                 |               | -           |            |
| Null: Unit root (assumes individ         |                 |               | _           | 154        |
| Im, Pesaran and Shin W-stat              |                 |               | 7           | 154<br>154 |
|                                          |                 |               |             |            |

Table 8: Results of the stationarity test for OP

| Date: 03/25/24 Time: 05:25<br>Sample: 2000 2022<br>Exogenous variables: Individua<br>Automatic selection of maximu<br>Automatic lag lenoth selection | m lags         |          | ear trends |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|------------|-----|
| Newey-West automatic bandwidth selection and Bartlett kernel<br>Balanced observations for each test                                                  |                |          |            |     |
|                                                                                                                                                      |                |          | Cross-     |     |
| Method                                                                                                                                               | Statistic      | Prob.**  | sections   | Obs |
| Null: Unit root (assumes comm                                                                                                                        | on unit root   | process) |            |     |
| Levin, Lin & Chu t*                                                                                                                                  | -8.33590       | 0.0000   | 7          | 147 |
| Breitung t-stat                                                                                                                                      | -7.32945       | 0.0000   | 7          | 140 |
|                                                                                                                                                      | dual unit root | process) |            |     |
| Null: Unit root (assumes individual)                                                                                                                 |                |          | 7          | 147 |
|                                                                                                                                                      | -5.96372       | 0.0000   | /          |     |
| Null: Unit root (assumes individually lim, Pesaran and Shin W-stat<br>ADF - Fisher Chi-square                                                        |                |          | 7          | 147 |

Source: Prepared by the researchers based on the outputs of Eviews 12.

## - Table 10: Results of the Stationarity Test for TFC

| Date: 03/25/24 Time: 04:33                                   |                |               |            |     |
|--------------------------------------------------------------|----------------|---------------|------------|-----|
| Sample: 2000 2022                                            |                |               |            |     |
| Exogenous variables: Individua                               |                | lividual line | ear trends |     |
| Automatic selection of maximum lags                          |                |               |            |     |
| Automatic lag length selection based on SIC: 0 to 4          |                |               |            |     |
| Newey-West automatic bandwidth selection and Bartlett kernel |                |               |            |     |
|                                                              |                |               | Cross-     |     |
| Method                                                       | Statistic      | Prob.**       | sections   | Obs |
| Null: Unit root (assumes comm                                | on unit root   | process)      |            |     |
| Levin, Lin & Chu t*                                          | 1.01669        | 0.8453        | 7          | 149 |
| Breitung t-stat                                              | 0.26336        | 0.6039        | 7          | 142 |
| Null: Unit root (assumes individ                             | dual unit roof | process)      |            |     |
| Im, Pesaran and Shin W-stat                                  | 0.87984        | 0.8105        | 7          | 149 |
| ADE - El-bas Obl                                             | 12.0531        | 0.6020        | 7          | 149 |
| ADF - Fisher Chi-square                                      | 5.68287        | 0.9739        | 7          | 154 |
| PP - Fisher Chi-square                                       |                |               |            |     |

# - Table 11: Results of the Stationarity Test for D(TFC)

| Date: 03/25/24 Time: 04:33<br>Sample: 2000 2022                                         |                 |               |            |     |
|-----------------------------------------------------------------------------------------|-----------------|---------------|------------|-----|
| Exogenous variables: Individua                                                          | al effects, inc | lividual line | ear trends |     |
| Automatic selection of maximum lags Automatic lag length selection based on SIC: 0 to 1 |                 |               |            |     |
|                                                                                         |                 |               |            |     |
|                                                                                         |                 |               | Cross-     |     |
| Method                                                                                  | Statistic       | Prob.**       | sections   | Obs |
| Null: Unit root (assumes comm                                                           | on unit root    | process)      |            |     |
| Levin, Lin & Chu t*                                                                     | -4.14706        | 0.0000        | 7          | 145 |
| Breitung t-stat                                                                         | -1.27757        | 0.1007        | 7          | 138 |
| Null: Unit root (assumes individ                                                        | dual unit root  | process)      |            |     |
| Im, Pesaran and Shin W-stat                                                             | -3.57566        | 0.0002        | 7          | 145 |
| ADF - Fisher Chi-square                                                                 | 36.2281         | 0.0010        | 7          | 145 |
| PP - Fisher Chi-square                                                                  | 38.3521         | 0.0005        | 7          | 147 |

Source: Prepared by the researchers based on the outputs of Eviews 12.

#### - Table 12: Results of the Stationarity Test for WF

| Series: WF<br>Date: 03/25/24 Time: 05:20                     |                 |               |            |     |  |  |
|--------------------------------------------------------------|-----------------|---------------|------------|-----|--|--|
| Sample: 2000 2022                                            |                 |               |            |     |  |  |
| Exogenous variables: Individua                               | al effects, inc | lividual line | ear trends |     |  |  |
| utomatic selection of maximum lags                           |                 |               |            |     |  |  |
| Automatic lag length selection based on SIC: 0 to 3          |                 |               |            |     |  |  |
| Newey-West automatic bandwidth selection and Bartlett kernel |                 |               |            |     |  |  |
|                                                              |                 |               | Cross-     |     |  |  |
| Method                                                       | Statistic       | Prob.**       | sections   | Obs |  |  |
| Null: Unit root (assumes comm                                | on unit root    | process)      |            |     |  |  |
| evin, Lin & Chu t*                                           | -0.81639        | 0.2071        | 7          | 144 |  |  |
| Breitung t-stat                                              | -0.75322        | 0.2257        | 7          | 137 |  |  |
| Null: Unit root (assumes individ                             | dual unit root  | process)      |            |     |  |  |
| m, Pesaran and Shin W-stat                                   | -1.69252        | 0.0453        | 7          | 144 |  |  |
|                                                              | 23.3370         | 0.0550        | 7          | 144 |  |  |
| ADF - Fisher Chi-square                                      | 14 3708         | 0.4225        | 7          | 154 |  |  |
|                                                              | 14.0700         |               |            |     |  |  |

- Table 13: Results of the Stationarity Test for D(WF)

| Date: 03/25/24 Time: 05:21<br>Sample: 2000 2022                                            |                 |               |            |     |
|--------------------------------------------------------------------------------------------|-----------------|---------------|------------|-----|
| Exogenous variables: Individua                                                             | al effects, inc | lividual line | ear trends |     |
| Automatic selection of maximum lags<br>Automatic lag length selection based on SIC: 0 to 1 |                 |               |            |     |
|                                                                                            |                 |               |            |     |
|                                                                                            |                 |               | Cross-     |     |
| Method                                                                                     | Statistic       | Prob.**       |            | Obs |
| Null: Unit root (assumes comm                                                              | on unit root    | process)      |            |     |
| Levin, Lin & Chu t*                                                                        | -3.73382        | 0.0001        | 7          | 143 |
| Breitung t-stat                                                                            | -1.03348        | 0.1507        | 7          | 136 |
| Niville I last root (accounts a individ                                                    | d l             |               |            |     |
| Null: Unit root (assumes individ                                                           |                 |               | 7          | 143 |
| Im, Pesaran and Shin W-stat                                                                |                 |               | 7          | 143 |
| ADF - Fisher Chi-square                                                                    |                 |               | <u>′</u>   | 143 |
| PP - Fisher Chi-square                                                                     | 66.4049         | 0.0000        | /          | 147 |

Source: Prepared by the researchers based on the outputs of Eviews 12.

## - Table 14: Results of the Stationarity Test for TOP

| Panel unit root test: Summary     |                |                |              |        |
|-----------------------------------|----------------|----------------|--------------|--------|
| Series: TOP                       |                |                |              |        |
| Date: 03/25/24 Time: 05:53        |                |                |              |        |
| Sample: 2000 2022                 |                |                |              |        |
| Exogenous variables: Individua    | al effects inc | dividual line  | ar trends    |        |
| Automatic selection of maximu     |                | arviduai iiric | our trontas  |        |
| Automatic lag length selection    |                | C: 0 to 2      |              |        |
| Newey-West automatic bandw        |                |                | ett kernel   |        |
| 110110) 1100t datomatic bandw     | 551661101      | Tana Daru      | Ctt NOTTICE  |        |
|                                   |                |                | Cross-       |        |
| Method                            | Statistic      | Prob.**        | sections     | Obs    |
| Null: Unit root (assumes comm     | on unit root   | process)       |              |        |
| Levin, Lin & Chu t*               | -0.75912       |                | 7            | 150    |
| Breitung t-stat                   | 1.05593        | 0.8545         | 7            | 143    |
|                                   |                |                |              |        |
| Null: Unit root (assumes individ  | dual unit root | process)       |              |        |
| Im, Pesaran and Shin W-stat       | 0.61723        | 0.7315         | 7            | 150    |
| ADF - Fisher Chi-square           | 7.35599        | 0.9201         | 7            | 150    |
| PP - Fisher Chi-square            | 12.9574        | 0.5299         | 7            | 154    |
|                                   |                |                |              |        |
| ** Probabilities for Fisher tests | are compute    | ed using ar    | n asymptotic | Chi    |
| -square distribution. All ot      | her tests ass  | sume asyn      | ptotic norm  | ality. |

- Table 15: Results of the Stationarity Test for D(TOP)

| Automatic selection of maximu<br>Automatic lag length selection<br>Newey-West automatic bandw | based on SI    |          | lett kernel |     |
|-----------------------------------------------------------------------------------------------|----------------|----------|-------------|-----|
|                                                                                               |                |          | Cross-      |     |
| Method                                                                                        | Statistic      | Prob.**  | sections    | Obs |
| Null: Unit root (assumes comm                                                                 | on unit root   | process) |             |     |
| Levin, Lin & Chu t*                                                                           | -6.32067       | 0.0000   | 7           | 143 |
| Breitung t-stat                                                                               | -3.03782       | 0.0012   | 7           | 136 |
| Null: Unit root (assumes individ                                                              | dual unit root | process) |             |     |
| Im. Pesaran and Shin W-stat                                                                   | -6.21719       | 0.0000   | 7           | 143 |
| ADF - Fisher Chi-square                                                                       | 61.1416        | 0.0000   | 7           | 143 |
| PP - Fisher Chi-square                                                                        |                |          | 7           | 147 |

Source: Prepared by the researchers based on the outputs of Eviews 12.

The results of all the tests shown in tables (14, 12, 10, 8, 6) indicate the acceptance of the null hypothesis, meaning that the time series of the study variables (PGDP, OP, TFC, WF, TOP) are non-stationary at their original levels at a significance level of 1%. When applying first-order differences, all the results of

the tests shown in tables (15, 13, 11, 9, 7) rejected the null hypothesis and accepted the alternative hypothesis, which states that the time series of the study variables (PGDP, OP, TFC, WF, TOP) are stationary at the first difference I(1).

#### **Testing for Cointegration of Panel Data:**

After verifying the stability of the time series for the study variables, we can state that these series are potentially cointegrated of order (Hurlin & Mignon, 2006, pp. 23-28). To check for the existence of cointegration, we perform the Pedroni test, which is considered one of the most well-known tests in this field. This test is based on the null hypothesis that there is no cointegration among the variables, while the alternative hypothesis claims the existence of cointegration among the variables. The results are presented in Table 16.

Table 16: Results of the Pedroni Test for Cointegration

| Pedroni Residual Coint<br>Series: PGDP OP TFC |                   |              |                 |        |
|-----------------------------------------------|-------------------|--------------|-----------------|--------|
| Date: 03/31/24 Time:                          |                   |              |                 |        |
| Sample: 2000 2022                             | 03.47             |              |                 |        |
| Included observations:                        | 161               |              |                 |        |
| Cross-sections included                       | d: 7              |              |                 |        |
| Null Hypothesis: No coi                       | integration       |              |                 |        |
| Trend assumption: No                          | deterministic tre | end          |                 |        |
| User-specified lag leng                       |                   |              |                 |        |
| Newey-West automatic                          | bandwidth sele    | ection and l | Bartlett kernel |        |
| Alternative hypothesis:                       |                   | •            | Weighted        |        |
|                                               | Statistic         |              |                 |        |
| Panel v-Statistic                             |                   |              | 0.521650        |        |
| Panel rho-Statistic                           |                   |              | 1.012534        |        |
| Panel PP-Statistic                            |                   |              | -0.452993       |        |
| Panel ADF-Statistic                           | -1.707637         | 0.0439       | -1.826366       | 0.0339 |
| Alternative hypothesis:                       | individual AR c   | oefs. (betw  | een-dimensio    | n)     |
|                                               | Statistic         | Prob.        |                 |        |
| Group rho-Statistic                           |                   |              |                 |        |
| Group PP-Statistic                            |                   |              |                 |        |
| Group ADF-Statistic                           | -1.698651         | 0.0447       |                 |        |

Source: Prepared by the researchers based on the outputs of Eviews 12.

#### Cointegration Testing Using Pedroni:

The Pedroni cointegration test is shown in Table 16, which utilizes seven statistics for testing cointegration. Most of the Pedroni test statistics reject the null hypothesis of no cointegration at the 5% significance level, confirming the existence of cointegration among the study variables in the long run.

Consequently, the results of the Pedroni test demonstrate that there is a cointegration relationship between the variables, indicating that the estimated relationship among the cointegrated series within the study model represents a long-term structural equilibrium relationship rather than spurious regression. The estimated model is referred to as a Vector Error Correction Model (VECM).

To estimate the VECM for the long-term relationship, we employ the Fully Modified Ordinary Least Squares (FMOLS) method developed by Pedroni in 2000. This method is distinguished by its ability to handle endogeneity of explanatory variables, autocorrelation of errors, and potential heteroskedasticity of parameters in the long run. FMOLS provides approximately unbiased estimates

with the least variance, thereby ensuring consistency (Pedroni, 2000, pp. 96-100). The results are illustrated in Table 17.

#### 3.3. Estimation of the Error Correction Model Using FMOLS:

Table 17: Results of Error Correction Model Estimation Using FMOLS

Dependent Variable: PGDP

Method: Panel Fully Modified Least Squares (FMOLS)

Date: 03/31/24 Time: 10:03 Sample (adjusted): 2001 2022 Periods included: 22 Cross-sections included: 7

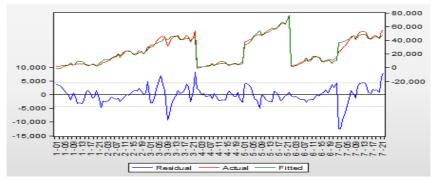
Total panel (balanced) observations: 154
Panel method: Pooled estimation
Cointegrating equation deterministics: C

Cointegrating equation deterministics: C
Coefficient covariance computed using default method

Long-run covariance estimates (Bartlett kernel, Newey-West fixed bandwidth)

| Variable                                                                   | Coefficient                                  | Std. Error                                   | t-Statistic                                  | Prob.                                |
|----------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------|
| OP<br>TFC<br>WF<br>TOP                                                     | 95.45870<br>0.006456<br>820.8649<br>1970.583 | 14.89288<br>0.001897<br>231.9950<br>2278.116 | 6.409689<br>3.402728<br>3.538287<br>0.865005 | 0.0000<br>0.0009<br>0.0005<br>0.0085 |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Long-run variance | 0.976340<br>0.974685<br>3192.021<br>19020412 | Mean depend<br>S.D. depende<br>Sum squared   | ent var                                      | 24786.66<br>20062.22<br>1.46E+09     |

Source: Prepared by the researchers based on the outputs of Eviews 12.


We observe from Table 17 that the value of the coefficient of determination indicates  $R^2 = 0.98$  that 98% of the changes in economic growth are explained within this model in the long term. Regarding the coefficient of the oil prices variable (OP), it is statistically significant at the 1% significance level, and its sign is economically acceptable, indicating a positive impact on per capita GDP in the long term. Specifically, an increase in oil prices by one unit leads to an increase in per capita GDP by approximately \$95,458.70 for all countries in the sample. Thus, it can be considered a determining factor for increasing economic growth in the long term. As for the other control variables (TFC, WF, TOP), they are also statistically significant at the 1% significance level, with economically acceptable signs, indicating their influence on per capita GDP in the long term.

#### 4.3. Diagnostic Tests:

Through diagnostic tests, we aim to assess the quality of the selected model according to the following tests:

#### 1. Goodness-of-Fit Test:

Figure 1: Result of the Goodness-of-Fit Test



Source: Prepared by the researchers based on the outputs of Eviews 12.

We observe from Figure 1 that there is a nearly perfect fit between the original series (Actual) and the fitted series (Fitted). This gives us an idea of how well the estimated model expresses the data of the studied series.

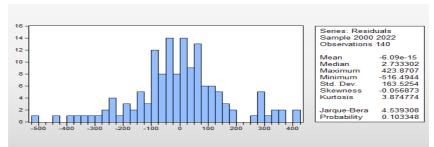
# 2.4.3. Ljung-Box Test for Residuals:

Figure 2: Results of Ljung-Box Test Statistics for Residuals

| Autocorrelation | Partial Correlation  |    | AC     | PAC    | Q-Stat | Prob |
|-----------------|----------------------|----|--------|--------|--------|------|
| Autocorrelation | r artial Correlation |    |        | 170    | Q-Olat | 1100 |
| 1   1           | 1 1 1                | 1  | 0.009  | 0.009  | 0.0063 | 0.93 |
| ( <b>[</b> ] (  | 1 1                  | 2  | -0.091 | -0.091 | 0.7283 | 0.69 |
| 1 1 1           | 1 1 1                | 3  | 0.013  | 0.014  | 0.7425 | 0.86 |
| · [m ·          |                      | 4  | 0.121  | 0.114  | 2.0653 | 0.72 |
| - III -         | 1 11                 | 5  | 0.062  | 0.064  | 2.4182 | 0.78 |
| 1.0             | 1 11                 | 6  | -0.041 | -0.023 | 2.5749 | 0.86 |
| ( <b>4</b> )    | III                  | 7  | -0.142 | -0.139 | 4.4759 | 0.72 |
| 100             | 1 1                  | 8  | -0.065 | -0.089 | 4.8785 | 0.77 |
| 1   1           | 1 11                 | 9  | 0.005  | -0.032 | 4.8808 | 0.84 |
| · 🗐 ·           | III                  | 10 | -0.116 | -0.124 | 6.1977 | 0.79 |
| ( ) (           | 1 1 1 1              | 11 | 0.030  | 0.071  | 6.2860 | 0.85 |
| . =             | . =                  | 12 | 0.248  | 0.287  | 12.478 | 0.40 |

Figure 3: Results of Ljung-Box Test Statistics for Squared Residuals

| Date: 03/31/24 Tin<br>Sample: 2000 2022<br>Included observatio |                     |    |        |        |        |      |
|----------------------------------------------------------------|---------------------|----|--------|--------|--------|------|
| Autocorrelation                                                | Partial Correlation |    | AC     | PAC    | Q-Stat | Prob |
| - 10                                                           |                     | 1  | 0.146  | 0.146  | 1.8458 | 0.17 |
| 1   1                                                          | 1 11                | 2  | 0.010  | -0.011 | 1.8548 | 0.39 |
| 1 11 1                                                         |                     | 3  | 0.048  | 0.049  | 2.0570 | 0.56 |
| -                                                              | = -                 |    |        | -0.200 |        | 0.28 |
|                                                                | III                 | 5  | -0.225 | -0.178 | 9.6450 | 0.08 |
| · 🛍 ·                                                          | 1 11                | 6  | -0.086 | -0.039 | 10.325 | 0.11 |
| 1 11 1                                                         | P                   | 7  |        | 0.101  |        | 0.15 |
| 1 11 1                                                         | 1 11                | 8  | 0.045  | 0.024  | 10.799 | 0.21 |
| 1   1                                                          |                     | 9  | 0.013  | -0.064 | 10.815 | 0.28 |
| 1   1                                                          | 1 1                 | 10 |        | -0.067 | 10.823 | 0.37 |
| · 🗐 ·                                                          |                     | 11 | 0.112  |        |        | 0.35 |
| 1 11 1                                                         | <b> </b>            | 12 | 0.051  | 0.080  | 12.336 | 0.41 |


Source: Prepared by the researchers based on the outputs of Eviews 12.

From Figure 2, we observe that the Ljung-Box test statistic for residuals is greater than the 5% significance level, leading us to accept the null hypothesis, which states that there is no autocorrelation among the residuals. Furthermore, the Ljung-Box test statistic for squared residuals in Figure 3 indicates the homoscedasticity of the residuals, which signifies the quality and efficiency of the model's estimates.

#### 3.4.3. Normality Test for Residuals:

We conduct the Jarque-Bera test to determine whether the residuals follow a normal distribution. The null hypothesis states that the residuals are normally distributed, and the results are recorded in Figure 4:

Figure 4: Results of the Normality Test for Residuals



Source: Prepared by the researchers based on the outputs of Eviews 12.

Figure 4 shows that the p-value associated with the Jarque-Bera test is 0.10, which is greater than 0.05. Therefore, we accept the null hypothesis that the residuals are normally distributed.

#### Conclusion

This empirical study on the impact of oil prices on economic growth in several oil-exporting countries during the period (2000-2020) reveals that the proposed model for the study sample is a fixed effects model (MEF) based on the Hausman test. This indicates that oil price fluctuations significantly influence the model's intercept. According to this model, rising oil prices positively affect economic growth.

However, the results of the autocorrelation tests indicated that the model suffers from residual autocorrelation. In this case, the estimates of the parameters are unbiased and consistent, but they lose the property of being the best linear unbiased estimators (BLUE), which implies that the model is not acceptable in the traditional sense and better estimations should be sought. To enhance the results of the study and the explanatory power of the model, we examined the long-term effects of oil prices on economic growth, and the findings indicate the following:

- The Pedroni cointegration test confirmed a long-term equilibrium relationship between economic growth and oil prices, along with other control variables.
- The results from estimating the error correction model (VECM) using FMOLS indicated that higher oil prices (OP) have a positive impact on economic growth, measured by per capita GDP, in the long term.
- As for the other control variables (TFC, WF, TOP), they are statistically significant at the 1% level, and their signs are economically valid, positively influencing per capita GDP in the long term.

#### References

- 1. Baltagi, B. H. (2015). Panel data. Oxford: Oxford University Press. pp. 16-21.
- 2. Baltagi, B. H., Kao, C., & Peng, B. (2016). Testing cross-sectional correlation in large panel data models with serial correlation. Econometrics, 4(44), 03-06.
- 3. Hurlin, C., & Mignon, V. (2006). Une synthèse des tests de cointegration sur données de panel. Université d'Orléans, 23-28.
- 4. Hotelling, H. (1931). The economics of exhaustible resources. The Journal of Political Economy, 39(2), 137-138.

- 5. Jean Louis Maichielli. (1988). Principes d'économie internationale. Éd. Économia.
- 6. Pedroni, P. (2000). Fully modified OLS for heterogeneous cointegrated panels. Emerald Group Publishing Limited, Bingley, 15, 96-100.
- 7. William, G. (2005). Économétrie (Vol. édition française dirigée). (S. Didier, Éd., A. Théophile, & C. Nicolas, Trads.). Université Paris II. p. 277.
- 8. World Bank data. (2024). Accessed January 01, 2024, at 22:34. Retrieved from https://data.albankaldawli.org/country (Visited 12/01/2024).
- 9. Grigat, K., & Yang, S. (2013). A blessing too great. Finance and Development, 10-11.